Focal segmental glomerulosclerosis (FSGS) is a clinical-pathologic syndromes characterized by the accumulation of fibrotic proteins in glomeruli, initially involving only some glomeruli (focal) and involving portions (segments) of the affected glomeruli. FSGS can be classified as follows: idiopathic FSGS, genetic FSGS and post-adaptive FSGS (associated with glomerular hypertrophy and hyperfiltration, and due to reduced renal mass, renal toxins, obesity, and sickle cell disease). A related syndrome is collapsing glomerulopathy, associated with podocyte hyperplasia whereas FSGS is associated with podocyte depletion. Collapsing glomerulopathy can be classified as HIV-associated or idiopathic. The incidence of idiopathic FSGS is increased by a factor of 4 in African Americans, and the incidence of HIV-associated collapsing glomerulpathy is increased by a factor of 18 in African Americans. In prior years, we have shown that most of this effect is due to genetic variation in APOL1. A related project pursues that hypothesis that other scarring disorders which are more common in individuals of African descent are associated with genetic mutations. We have identified a number of families of diverse geographical ancestry with familial keloids, and will use genome scans to identify the responsible locus. An exome scan has identified several promising candidate loci which we are further characterizing. chip. Our progress during the past year included the following: 1) Showing that APOL1 RNA forms stem loops, with the pathogenic G1 and G2 variants doing this more than the common variant G0. This activates protein kinase R, which results in podocyte damage and glomerulosclerosis in transgenic mice. Ms under review. 2) Showing that APOL1 expresses a novel mRNA isoform, which we have termed B3, and the G2 variant activates the inflammasome more than the G0 variant, resulting in increased IL1b production.

Project Start
Project End
Budget Start
Budget End
Support Year
22
Fiscal Year
2017
Total Cost
Indirect Cost
Name
U.S. National Inst Diabetes/Digst/Kidney
Department
Type
DUNS #
City
State
Country
Zip Code
Lee, Hewang; Roshanravan, Hila; Wang, Ying et al. (2018) ApoL1 renal risk variants induce aberrant THP-1 monocyte differentiation and increase eicosanoid production via enhanced expression of cyclooxygenase-2. Am J Physiol Renal Physiol 315:F140-F150
Hyacinth, Hyacinth I; Carty, Cara L; Seals, Samantha R et al. (2018) Association of Sickle Cell Trait With Ischemic Stroke Among African Americans: A Meta-analysis. JAMA Neurol 75:802-807
Franceschini, Nora; Kopp, Jeffrey B; Barac, Ana et al. (2018) Association of APOL1 With Heart Failure With Preserved Ejection Fraction in Postmenopausal African American Women. JAMA Cardiol 3:712-720
GutiƩrrez, Orlando M; Irvin, Marguerite R; Chaudhary, Ninad S et al. (2018) APOL1 Nephropathy Risk Variants and Incident Cardiovascular Disease Events in Community-Dwelling Black Adults. Circ Genom Precis Med 11:e002098
Hughson, Michael D; Hoy, Wendy E; Mott, Susan A et al. (2018) APOL1 Risk Variants Independently Associated With Early Cardiovascular Disease Death. Kidney Int Rep 3:89-98
GutiƩrrez, Orlando M; Limou, Sophie; Lin, Feng et al. (2018) APOL1 nephropathy risk variants do not associate with subclinical atherosclerosis or left ventricular mass in middle-aged black adults. Kidney Int 93:727-732
Doshi, Mona D; Ortigosa-Goggins, Mariella; Garg, Amit X et al. (2018) APOL1 Genotype and Renal Function of Black Living Donors. J Am Soc Nephrol 29:1309-1316
Kopp, Jeffrey B (2017) Chronic Kidney Disease in the Aging Human Immunodeficiency Virus-Infected Population. J Infect Dis :
Chen, Teresa K; Estrella, Michelle M; Vittinghoff, Eric et al. (2017) APOL1 genetic variants are not associated with longitudinal blood pressure in young black adults. Kidney Int 92:964-971
Heymann, Jurgen; Winkler, Cheryl A; Hoek, Maarten et al. (2017) Therapeutics for APOL1 nephropathies: putting out the fire in the podocyte. Nephrol Dial Transplant 32:i65-i70

Showing the most recent 10 out of 79 publications