We have shown that in cells, a nuclear protein PTIP and a novel protein PA1 are both subunits of a Set1-like histone H3K4 methyltransferase complex (i.e. MLL3/MLL4 complex) that contains H3K4 methyltransferases MLL3 and MLL4 (also known as ALR and MLL2), and the JmjC domain-containing histone H3K27 demethylase UTX (Cho, Y.-W., et al., J. Biol. Chem., 2007. 282: p. 20395-20406;Hong, S., et al., PNAS, 2007. 104: p. 18439-18444).Further, we found that histone methylation regulator PTIP is essential for the robust induction of PPARgamma and C/EBPa, the two principal adipogenic transcription factors, during adipogenesis. Accordingly, PTIP-/- cells show striking defects in adipogenesis. Thus, by regulating PPARgamma and C/EBPa expression, PTIP plays a critical role in adipogenesis (Cho, Y.W., et al., Cell Metab, 2009. 10(1): p. 27-39). Methylation on H3K4 is an activating epigenetic mark while methylation on H3K27 is a repressive one. Based on our finding that H3K4 methyltransferases MLL3/MLL4 physically associate with H3K27 demethylase UTX, we propose that by adding an activating epigenetic mark and removing a repressive one, the MLL3/MLL4 complex may use two distinct histone modifying activities to synergistically activate target gene expression. We are currently investigating whether the PTIP-associated H3K4 methyltransferases MLL3 and MLL4, H3K27 demethylase UTX, and a novel protein PA1, are involved in the regulation of PPARgamma expression and/or adipogenesis.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Zip Code
Seok, Sunmi; Kim, Young-Chae; Byun, Sangwon et al. (2018) Fasting-induced JMJD3 histone demethylase epigenetically activates mitochondrial fatty acid ?-oxidation. J Clin Invest 128:3144-3159
Local, Andrea; Huang, Hui; Albuquerque, Claudio P et al. (2018) Identification of H3K4me1-associated proteins at mammalian enhancers. Nat Genet 50:73-82
Wu, Qibiao; Tian, Yahui; Zhang, Jian et al. (2018) In vivo CRISPR screening unveils histone demethylase UTX as an important epigenetic regulator in lung tumorigenesis. Proc Natl Acad Sci U S A 115:E3978-E3986
Yan, Jian; Chen, Shi-An A; Local, Andrea et al. (2018) Histone H3 lysine 4 monomethylation modulates long-range chromatin interactions at enhancers. Cell Res 28:204-220
Froimchuk, Eugene; Jang, Younghoon; Ge, Kai (2017) Histone H3 lysine 4 methyltransferase KMT2D. Gene 627:337-342
Lee, Ji-Eun; Park, Young-Kwon; Park, Sarah et al. (2017) Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat Commun 8:2217
Northrup, Daniel; Yagi, Ryoji; Cui, Kairong et al. (2017) Histone demethylases UTX and JMJD3 are required for NKT cell development in mice. Cell Biosci 7:25
Shpargel, Karl B; Starmer, Joshua; Wang, Chaochen et al. (2017) UTX-guided neural crest function underlies craniofacial features of Kabuki syndrome. Proc Natl Acad Sci U S A 114:E9046-E9055
Lai, Binbin; Lee, Ji-Eun; Jang, Younghoon et al. (2017) MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res 45:6388-6403
Zhang, Zheng; Christin, John R; Wang, Chunhui et al. (2016) Mammary-Stem-Cell-Based Somatic Mouse Models Reveal Breast Cancer Drivers Causing Cell Fate Dysregulation. Cell Rep 16:3146-3156

Showing the most recent 10 out of 43 publications