Histone methyltransferase G9a is responsible for H3K9 di-methylation (H3K9me2), an epigenetic mark for gene repression. However, the roles of G9a and G9a-mediated H3K9me2 in adipogenesis have not been reported. We report recently that G9a represses PPARgamma expression and adipogenesis. G9a regulates both positive and negative master regulators of adipogenesis: G9a represses PPARgamma expression dependent on its H3K9 methyltransferase activity while promotes Wnt expression independent of its enzymatic activity (EMBO J 2013). Together with our previous report that H3K4 methylation regulator PTIP is required for PPARgamma and C/EBPa expression and adipogenesis, these findings provide an initial view of epigenetic regulation of adipogenesis, and suggest that histone methylations control expression of positive and negative master regulators of adipogenesis.

Project Start
Project End
Budget Start
Budget End
Support Year
5
Fiscal Year
2013
Total Cost
$468,244
Indirect Cost
City
State
Country
Zip Code
Zhuang, Lenan; Jang, Younghoon; Park, Young-Kwon et al. (2018) Depletion of Nsd2-mediated histone H3K36 methylation impairs adipose tissue development and function. Nat Commun 9:1796
Katz, Liora S; Xu, Shiliyang; Ge, Kai et al. (2018) T3 and Glucose Coordinately Stimulate ChREBP-Mediated Ucp1 Expression in Brown Adipocytes From Male Mice. Endocrinology 159:557-569
Park, Young-Kwon; Wang, Limin; Giampietro, Anne et al. (2017) Distinct Roles of Transcription Factors KLF4, Krox20, and Peroxisome Proliferator-Activated Receptor ? in Adipogenesis. Mol Cell Biol 37:
Park, Young-Kwon; Ge, Kai (2017) Glucocorticoid Receptor Accelerates, but Is Dispensable for, Adipogenesis. Mol Cell Biol 37:
Lai, Binbin; Lee, Ji-Eun; Jang, Younghoon et al. (2017) MLL3/MLL4 are required for CBP/p300 binding on enhancers and super-enhancer formation in brown adipogenesis. Nucleic Acids Res 45:6388-6403
Froimchuk, Eugene; Jang, Younghoon; Ge, Kai (2017) Histone H3 lysine 4 methyltransferase KMT2D. Gene 627:337-342
Lee, Ji-Eun; Park, Young-Kwon; Park, Sarah et al. (2017) Brd4 binds to active enhancers to control cell identity gene induction in adipogenesis and myogenesis. Nat Commun 8:2217
Ang, Siang-Yun; Uebersohn, Alec; Spencer, C Ian et al. (2016) KMT2D regulates specific programs in heart development via histone H3 lysine 4 di-methylation. Development 143:810-21
Ray Chaudhuri, Arnab; Callen, Elsa; Ding, Xia et al. (2016) Replication fork stability confers chemoresistance in BRCA-deficient cells. Nature 535:382-7
Zhang, Jiyuan; Dominguez-Sola, David; Hussein, Shafinaz et al. (2015) Disruption of KMT2D perturbs germinal center B cell development and promotes lymphomagenesis. Nat Med 21:1190-8

Showing the most recent 10 out of 26 publications