OF WORK: Through studies of the RTs mechanism, our laboratory, in collaboration with others, discovered that the mutation propensity is linked to how strongly the enzyme stays attached to the DNA template during replication. Thus, if RT falls off the viral template during replication, RT tends to make an error (or mutation) at the point where it climbs back on the template and continues replication. This mechanism appears to account for a portion of the HIV-1 genetic hypervariability. Much insight into the mechanism of falling off has been gained by combining structural information on RT with biochemical studies of the wild-type enzyme and enzymes altered in specific amino acid residues that control affinity of binding to the template. Future work emphasizes the role that DNA structure plays in the key polymerase function of selection of the correct nucleotide for insertion into the growing DNA strand. We are interested in the roles of amino acids that make contact with the template base and incoming nucleotide, especially Arg72, and the surrounding amino acids.

Project Start
Project End
Budget Start
Budget End
Support Year
18
Fiscal Year
2014
Total Cost
Indirect Cost
Name
U.S. National Inst of Environ Hlth Scis
Department
Type
DUNS #
City
State
Country
Zip Code
Oertell, Keriann; Kashemirov, Boris A; Negahbani, Amirsoheil et al. (2018) Probing DNA Base-Dependent Leaving Group Kinetic Effects on the DNA Polymerase Transition State. Biochemistry 57:3925-3933
Batra, Vinod K; Oertell, Keriann; Beard, William A et al. (2018) Mapping Functional Substrate-Enzyme Interactions in the pol ? Active Site through Chemical Biology: Structural Responses to Acidity Modification of Incoming dNTPs. Biochemistry 57:3934-3944
Rodriguez, Yesenia; Howard, Michael J; Cuneo, Matthew J et al. (2017) Unencumbered Pol ? lyase activity in nucleosome core particles. Nucleic Acids Res 45:8901-8915
Shock, David D; Freudenthal, Bret D; Beard, William A et al. (2017) Modulating the DNA polymerase ? reaction equilibrium to dissect the reverse reaction. Nat Chem Biol 13:1074-1080
Howard, Michael J; Rodriguez, Yesenia; Wilson, Samuel H (2017) DNA polymerase ? uses its lyase domain in a processive search for DNA damage. Nucleic Acids Res 45:3822-3832
Howard, Michael J; Wilson, Samuel H (2017) Processive searching ability varies among members of the gap-filling DNA polymerase X family. J Biol Chem 292:17473-17481
Batra, Vinod K; Beard, William A; Pedersen, Lars C et al. (2016) Structures of DNA Polymerase Mispaired DNA Termini Transitioning to Pre-catalytic Complexes Support an Induced-Fit Fidelity Mechanism. Structure 24:1863-1875
Chary, Parvathi; Beard, William A; Wilson, Samuel H et al. (2013) Inhibition of HIV-1 reverse transcriptase-catalyzed synthesis by intercalated DNA Benzo[a]Pyrene 7,8-Dihydrodiol-9,10-Epoxide adducts. PLoS One 8:e72131
Beard, William A; Batra, Vinod K; Wilson, Samuel H (2010) DNA polymerase structure-based insight on the mutagenic properties of 8-oxoguanine. Mutat Res 703:18-23