THE ORIGIN OF THE ADULT INTESTINAL STEM CELLS. To determine the origin of the adult intestinal stem cells, we made use of transgenic Xenopus tadpoles expressing GFP for recombinant organ cultures. The larval epithelium separated from the wild-type (Wt) or GFP transgenic (Tg) intestines before metamorphic climax was recombined with homologous and heterologous non-epithelial tissues and was cultivated in the presence of TH. In all kinds of recombinant intestines, adult progenitor cells expressing markers for intestinal stem cells such as sonic hedgehog became detectable and then differentiated into the adult epithelium expressing intestinal fatty acid binding-protein, a marker for absorptive cells. Importantly, whenever the epithelium was derived from Tg intestine, both the adult progenitor/stem cells and their differentiated cells expressed GFP, while neither of them expressed GFP in the Wt-derived epithelium. Our results thus have provided direct evidence that stem cells that generate the adult intestinal epithelium originate from the larval epithelium, presumably through TH-induced dedifferentiation of larval epithelial cells.

Project Start
Project End
Budget Start
Budget End
Support Year
2
Fiscal Year
2009
Total Cost
$214,330
Indirect Cost
City
State
Country
Zip Code
Okada, Morihiro; Shi, Yun-Bo (2018) EVI and MDS/EVI are required for adult intestinal stem cell formation during postembryonic vertebrate development. FASEB J 32:431-439
Okada, Morihiro; Shi, Yun-Bo (2017) Cell Proliferation Analysis during Xenopus Metamorphosis: Using 5-Ethynyl-2-Deoxyuridine (EdU) to Stain Proliferating Intestinal Cells. Cold Spring Harb Protoc 2017:pdb.prot097717
Yan, Hualong; Shi, Yun-Bo; Huang, Jing (2017) iPSCs are safe! Cell Biosci 7:30
Fu, Liezhen; Das, Biswajit; Matsuura, Kazuo et al. (2017) Genome-wide identification of thyroid hormone receptor targets in the remodeling intestine during Xenopus tropicalis metamorphosis. Sci Rep 7:6414
Okada, Morihiro; Miller, Thomas C; Wen, Luan et al. (2017) A balance of Mad and Myc expression dictates larval cell apoptosis and adult stem cell development during Xenopus intestinal metamorphosis. Cell Death Dis 8:e2787
Fu, Liezhen; Shi, Yun-Bo (2017) The Sox transcriptional factors: Functions during intestinal development in vertebrates. Semin Cell Dev Biol 63:58-67
Hasebe, Takashi; Fujimoto, Kenta; Kajita, Mitsuko et al. (2017) Thyroid Hormone-Induced Activation of Notch Signaling is Required for Adult Intestinal Stem Cell Development During Xenopus Laevis Metamorphosis. Stem Cells 35:1028-1039
Okada, Morihiro; Miller, Thomas C; Roediger, Julia et al. (2017) An Efficient, Simple, and Noninvasive Procedure for Genotyping Aquatic and Nonaquatic Laboratory Animals. J Am Assoc Lab Anim Sci 56:570-573
Wen, Luan; Fu, Liezhen; Shi, Yun-Bo (2017) Histone methyltransferase Dot1L is a coactivator for thyroid hormone receptor during Xenopus development. FASEB J 31:4821-4831
Shi, Yun-Bo; Yin, Deling (2017) A good sugar, d-mannose, suppresses autoimmune diabetes. Cell Biosci 7:48

Showing the most recent 10 out of 40 publications