During the past year we have continued our work applying rapid MRI to guide simple and complex mechanical and biological interventions. We continue to employ MRI catheterization as standard clinical practice at the NIH clinical center, based on our earlier careful pilot research comparison of conventional X-ray and wholly MRI guided transfemoral pulmonary artery catheterization in adults. We continue to enhance the capabilities of MRI catheterization to characterize heart function in patients. We have taught two dozen medical centers across North America and Europe how to adopt these techniques by hosting hands-on workshops in our labs at NIH. We have begun investigational MRI catheterization in children with congenital heart disease, to avoid radiation that can cause long term complications. So far we have performed the procedure in over 50 patients at our collaborative facility at Childrens National Medical Center in Washington DC. We are developing new approaches to connect different heart chambers without surgery in patients with congenital heart disease. We also continue work towards direct repair of congenital heart defects on small children who otherwise might require open surgical access. We continue a strategic project to connect the great veins to the pulmonary arteries (also known as cavopulmonary shunts, Glenn shunts, Fontan shunts) in animals, and are preparing to apply these techniques and patients in upcoming years. We have developed custom medical devices to make this happen. The technique was applied to a patient in California this year by our collaborator based on experiments performed in our lab. We have developed a completely new approach to treat heart rhythm disorders by injecting small amounts of acetic acid (vinegar) rather than conventional electrical burning (radiofrequency ablation). This new chemoablation approach provides targeted irreversible destruction of small amounts of electrical tissue in a way far more promising than conventional techniques. We are working on more sophisticated catheters for testing on patients. We are developing new low-energy MRI techniques that may allow us to use standard long conductive guidewires during catheterization without causing them to heat, and without modification. This year we successfully performed MRI catheterization in patients using these guidewires and these new techniques. Overall we have successfully developed novel applications of real-time MRI for cardiovascular treatments, and we continue to work to clinical applications of these exciting new developments.
Campbell-Washburn, Adrienne E; Rogers, Toby; Stine, Annette M et al. (2018) Right heart catheterization using metallic guidewires and low SAR cardiovascular magnetic resonance fluoroscopy at 1.5 Tesla: first in human experience. J Cardiovasc Magn Reson 20:41 |
Fischer, Peter; Faranesh, Anthony; Pohl, Thomas et al. (2018) An MR-Based Model for Cardio-Respiratory Motion Compensation of Overlays in X-Ray Fluoroscopy. IEEE Trans Med Imaging 37:47-60 |
Kakareka, John W; Faranesh, Anthony Z; Pursley, Randall H et al. (2018) Physiological Recording in the MRI Environment (PRiME): MRI-Compatible Hemodynamic Recording System. IEEE J Transl Eng Health Med 6:4100112 |
Campbell-Washburn, Adrienne E; Tavallaei, Mohammad A; Pop, Mihaela et al. (2017) Real-time MRI guidance of cardiac interventions. J Magn Reson Imaging 46:935-950 |
Rogers, Toby; Ratnayaka, Kanishka; Khan, Jaffar M et al. (2017) CMR fluoroscopy right heart catheterization for cardiac output and pulmonary vascular resistance: results in 102 patients. J Cardiovasc Magn Reson 19:54 |
Ratnayaka, Kanishka; Moore, John W; Rios, Rodrigo et al. (2017) First-in-Human Closed-Chest Transcatheter Superior Cavopulmonary Anastomosis. J Am Coll Cardiol 70:745-752 |
Ratnayaka, Kanishka; Kanter, Joshua P; Faranesh, Anthony Z et al. (2017) Radiation-free CMR diagnostic heart catheterization in children. J Cardiovasc Magn Reson 19:65 |
McGuirt, Delaney; Mazal, Jonathan; Rogers, Toby et al. (2016) X-ray Fused With Magnetic Resonance Imaging to Guide Endomyocardial Biopsy of a Right Ventricular Mass. Radiol Technol 87:622-6 |
Ratnayaka, Kanishka; Rogers, Toby; Schenke, William H et al. (2016) Magnetic Resonance Imaging-Guided Transcatheter Cavopulmonary Shunt. JACC Cardiovasc Interv 9:959-70 |
Rogers, Toby; Lederman, Robert J (2016) Exercise Magnetic Resonance Imaging Is a Gas. Circ Cardiovasc Imaging 9: |
Showing the most recent 10 out of 70 publications