Previously we have studied the contribution of histone modifications, DNA methylation and their regulatory enzymes to transcriptional regulation in a variety of cellular systems. Recent studies have suggested cellular heterogeneity in gene expression even in the same cell population. The question is whether there is a similar heterogeneity in chromatin states in the apparently same cells. To address this question, we have developed the single-cell DNase-seq technique that can be used to detect chromatin states in single-cells or small number of primary cells. By applying this technique to NIH3T3 and mouse ES cells, we show the the heterogeneity of chromatin accessibility underlies the heterogeneity of gene expression across different cells. We also demonstrated its application in identifying potential functional mutations in human cancers. To develop more technologies that can be used to analyze the mammalian epigenomes, we developed 3e Hi-C for analyzing the three dimensional organization in the nucleus (Ren et al., Mol Cell 2017). To characterize genome-wide enhancer-promoter interactions at high resolution, we developed a novel technique, Transposition-mediated Analysis of Chromatin Looping (Trac-looping) (Nature Methods, in press). To analyze the epigenome at a single-cell level, in addition to the previous single-cell DNase-seq assay (Nature 2015), we have developed a single-cell MNase-seq for analysis of genome-wide nucleosome positions (Nature 2018). Application of scMNase-seq to NIH3T3 cells, mouse primary naive CD4 T cells and mouse embryonic stem cells reveals two principles of nucleosome organization: first, nucleosomes in heterochromatin regions, or that surround the transcription start sites of silent genes, show large variation in positioning across different cells but are highly uniformly spaced along the nucleosome array; and second, nucleosomes that surround the transcription start sites of active genes and DNase I hypersensitive sites show little variation in positioning across different cells but are relatively heterogeneously spaced along the nucleosome array. We found a bimodal distribution of nucleosome spacing at DNase I hypersensitive sites, which corresponds to inaccessible and accessible states and is associated with nucleosome variation and variation in accessibility across cells. Nucleosome variation is smaller within single cells than across cells, and smaller within the same cell type than across cell types. A large fraction of naive CD4 T cells and mouse embryonic stem cells shows depleted nucleosome occupancy at the de novo enhancers detected in their respective differentiated lineages, revealing the existence of cells primed for differentiation to specific lineages in undifferentiated cell populations. Furthermore, we have developed single-cell ChIC-seq and ACT-seq for the analysis of histone modifications at a single-cell level.

Project Start
Project End
Budget Start
Budget End
Support Year
17
Fiscal Year
2019
Total Cost
Indirect Cost
Name
National Heart, Lung, and Blood Institute
Department
Type
DUNS #
City
State
Country
Zip Code
Baranello, Laura; Kouzine, Fedor; Wojtowicz, Damian et al. (2018) Mapping DNA Breaks by Next-Generation Sequencing. Methods Mol Biol 1672:155-166
Yohe, Marielle E; Gryder, Berkley E; Shern, Jack F et al. (2018) MEK inhibition induces MYOG and remodels super-enhancers in RAS-driven rhabdomyosarcoma. Sci Transl Med 10:
Hodges, H Courtney; Stanton, Benjamin Z; Cermakova, Katerina et al. (2018) Dominant-negative SMARCA4 mutants alter the accessibility landscape of tissue-unrestricted enhancers. Nat Struct Mol Biol 25:61-72
Resto, Melissa; Kim, Bong-Hyun; Fernandez, Alfonso G et al. (2017) O-GlcNAcase is an RNA polymerase II elongation factor coupled to pausing factors SPT5 and TIF1?. J Biol Chem 292:16524-16525
Gryder, Berkley E; Yohe, Marielle E; Chou, Hsien-Chao et al. (2017) PAX3-FOXO1 Establishes Myogenic Super Enhancers and Confers BET Bromodomain Vulnerability. Cancer Discov 7:884-899
Miller, Erik L; Hargreaves, Diana C; Kadoch, Cigall et al. (2017) TOP2 synergizes with BAF chromatin remodeling for both resolution and formation of facultative heterochromatin. Nat Struct Mol Biol 24:344-352
Nakayama, Robert T; Pulice, John L; Valencia, Alfredo M et al. (2017) SMARCB1 is required for widespread BAF complex-mediated activation of enhancers and bivalent promoters. Nat Genet 49:1613-1623
Stanton, Benjamin Z; Hodges, Courtney; Calarco, Joseph P et al. (2017) Smarca4 ATPase mutations disrupt direct eviction of PRC1 from chromatin. Nat Genet 49:282-288
Cooper, James; Ding, Yi; Song, Jiuzhou et al. (2017) Genome-wide mapping of DNase I hypersensitive sites in rare cell populations using single-cell DNase sequencing. Nat Protoc 12:2342-2354
Stanton, Benjamin Z; Hodges, Courtney; Crabtree, Gerald R et al. (2017) A General Non-Radioactive ATPase Assay for Chromatin Remodeling Complexes. Curr Protoc Chem Biol 9:1-10

Showing the most recent 10 out of 118 publications