The rapid accumulation of genome sequences and protein structures during the last decade has been paralleled by major advances in sequence database search methods. The powerful Position-Specific Iterating BLAST (PSI-BLAST) method developed at the NCBI formed the basis of our work on protein motif analysis. In addition, Hidden Markov Models (HMM), protein profile-against-profile comparison implemented in the HHSearch method, protein structure comparison methods and genome context analysis were extensively applied. Over the last year, we made further progress in detailed analysis of the classification, evolution, and functions of several classes of proteins and domains. Specifically, we studied processes of divergence and convergence in the evolution of enzyme families. Comparative analysis of the sequences of enzymes encoded in a variety of prokaryotic and eukaryotic genomes reveals convergence and divergence at several levels. Functional convergence can be inferred when structurally distinct and hence non-homologous enzymes show the ability to catalyze the same biochemical reaction. In contrast, as a result of functional diversification, many structurally similar enzyme molecules act on substantially distinct substrates and catalyze diverse biochemical reactions. Here, we present updates on the ATP-grasp, alkaline phosphatase, cupin, HD hydrolase, and N-terminal nucleophile (Ntn) hydrolase enzyme superfamilies and discuss the patterns of sequence and structural conservation and diversity within these superfamilies. Typically, enzymes within a superfamily possess common sequence motifs and key active site residues, as well as (predicted) reaction mechanisms. These observations suggest that the strained conformation (the entatic state) of the active site, which is responsible for the substrate binding and formation of the transition complex, tends to be conserved within enzyme superfamilies. The subsequent fate of the transition complex is not necessarily conserved and depends on the details of the structures of the enzyme and the substrate. This variability of reaction outcomes limits the ability of sequence analysis to predict the exact enzymatic activities of newly sequenced gene products. Nevertheless, sequence-based (super)family assignments and generic functional predictions, even if imprecise, provide valuable leads for experimental studies and remain the best approach to the functional annotation of uncharacterized proteins from new genomes. Another subject that was pursued extensively pertains to the analysis of proteins and domains that are involved in DNA replication in bacteria, archaea and eukaryotes. In particular, ssDNA-binding proteins (SSBs) based on the oligonucleotide-binding fold are considered ubiquitous in nature and play a central role in many DNA transactions including replication, recombination, and repair. We demonstrated that the Thermoproteales, a clade of hyperthermophilic Crenarchaea, lack a canonical SSB. Our collaborative research with the laboratory of Malcolm White (University of St Andrews) showed that Thermoproteales instead encode a distinct ssDNA-binding protein that we term """"""""ThermoDBP,"""""""" exemplified by the protein Ttx1576 from Thermoproteus tenax. ThermoDBP binds specifically to ssDNA with low sequence specificity. The crystal structure of Ttx1576 reveals a unique fold and a mechanism for ssDNA binding, consisting of an extended cleft lined with hydrophobic phenylalanine residues and flanked by basic amino acids. Two ssDNA-binding domains are linked by a coiled-coil leucine zipper. ThermoDBP appears to have displaced the canonical SSB during the diversification of the Thermoproteales, a highly unusual example of the loss of a """"""""ubiquitous"""""""" protein during evolution. In eukaryotes, the CMG (CDC45, MCM, GINS) complex containing the replicative helicase MCM is a key player in DNA replication. Archaeal homologs of the eukaryotic MCM and GINS proteins have been identified but until recently no homolog of the CDC45 protein was known. Two recent developments, namely the discovery of archaeal GINS-associated nuclease (GAN) that belongs to the RecJ family of the DHH hydrolase superfamily and the demonstration of homology between the DHH domains of CDC45 and RecJ, show that at least some Archaea possess a full complement of homologs of the CMG complex subunits. We conducted an in-depth phylogenomic analysis of RecJ homologs in archaea.The results confirm and extend the recent hypothesis that CDC45 is the eukaryotic ortholog of the bacterial and archaeal RecJ family nucleases. At least one RecJ homolog was identified in all sequenced archaeal genomes, with the single exception of Caldivirga maquilingensis. These proteins include previously unnoticed remote RecJ homologs with inactivated DHH domain in Thermoproteales. Combined with phylogenetic tree reconstruction of diverse eukaryotic, archaeal and bacterial DHH subfamilies, this analysis yields a complex scenario of RecJ family evolution in Archaea which includes independent inactivation of the nuclease domain in Crenarchaeota and Halobacteria, and loss of this domain in Methanococcales. Thus, the archaeal complex of a CDC45/RecJ homolog, MCM and GINS is homologous and most likely functionally analogous to the eukaryotic CMG complex, and appears to be a key component of the DNA replication machinery in all Archaea. It is inferred that the last common archaeo-eukaryotic ancestor encoded a CMG complex that contained an active nuclease of the RecJ family. The inactivated RecJ homologs in several archaeal lineages most likely are dedicated structural components of replication complexes. Jointly, these ongoing studies provide a new perspective on the remarkable diversity of protein domains involved in genome replication.

Project Start
Project End
Budget Start
Budget End
Support Year
19
Fiscal Year
2012
Total Cost
$303,689
Indirect Cost
Name
National Library of Medicine
Department
Type
DUNS #
City
State
Country
Zip Code
Krupovic, Mart; Cvirkaite-Krupovic, Virginija; Iranzo, Jaime et al. (2018) Viruses of archaea: Structural, functional, environmental and evolutionary genomics. Virus Res 244:181-193
Yutin, Natalya; Makarova, Kira S; Gussow, Ayal B et al. (2018) Discovery of an expansive bacteriophage family that includes the most abundant viruses from the human gut. Nat Microbiol 3:38-46
He, Fei; Bhoobalan-Chitty, Yuvaraj; Van, Lan B et al. (2018) Anti-CRISPR proteins encoded by archaeal lytic viruses inhibit subtype I-D immunity. Nat Microbiol 3:461-469
Shmakov, Sergey A; Makarova, Kira S; Wolf, Yuri I et al. (2018) Systematic prediction of genes functionally linked to CRISPR-Cas systems by gene neighborhood analysis. Proc Natl Acad Sci U S A 115:E5307-E5316
Pushkarev, Alina; Inoue, Keiichi; Larom, Shirley et al. (2018) A distinct abundant group of microbial rhodopsins discovered using functional metagenomics. Nature 558:595-599
Yutin, Natalya; Bäckström, Disa; Ettema, Thijs J G et al. (2018) Vast diversity of prokaryotic virus genomes encoding double jelly-roll major capsid proteins uncovered by genomic and metagenomic sequence analysis. Virol J 15:67
Ferrer, Manuel; Sorokin, Dimitry Y; Wolf, Yuri I et al. (2018) Proteomic Analysis of Methanonatronarchaeum thermophilum AMET1, a Representative of a Putative New Class of Euryarchaeota, ""Methanonatronarchaeia"". Genes (Basel) 9:
Koonin, Eugene V; Makarova, Kira S (2018) Discovery of Oligonucleotide Signaling Mediated by CRISPR-Associated Polymerases Solves Two Puzzles but Leaves an Enigma. ACS Chem Biol 13:309-312
Galperin, Michael Y; Makarova, Kira S; Wolf, Yuri I et al. (2018) Phyletic Distribution and Lineage-Specific Domain Architectures of Archaeal Two-Component Signal Transduction Systems. J Bacteriol 200:
Krupovic, Mart; Koonin, Eugene V (2017) Multiple origins of viral capsid proteins from cellular ancestors. Proc Natl Acad Sci U S A 114:E2401-E2410

Showing the most recent 10 out of 117 publications