GnRH neurons, critical for reproduction, are derived from the nasal placode and migrate into the brain where they become integral members of the hypothalamic-pituitary-gonadal axis. We study mechanism(s) underlying GnRH neuronal differentiation, migration and axonal targeting in normal/transgenic animals, and nasal explants. Using these same models, our work also addresses the mechanisms regulating (intrinsic and trans-synaptic) GnRH gene expression, peptide synthesis and secretion in GnRH neurons. Multiple approaches are used to identify and understand the multitude of molecules and factors which play a role in directing the GnRH neurons to their final location in the CNS. These include differential screening of libraries obtained from migrating versus non-migrating cells, examination of molecules differentially expressed at key locations along the migratory route, morphological examination of the development of the GnRH system in knockout mice, and perturbation of molecules in vitro and subsequent monitoring of GnRH neuronal movement. As GnRH neurons migrate they also mature and the two processes may in fact be linked. To investigate the maturation of GnRH neurons we use calcium imaging, electrophysiology and biochemical measures to examine GnRH neuronal activity and peptide secretion. In addition, we collaborate with labs performing human genetic screening of Kallman patients. Once a mutation is identified, we analyze the expression pattern in mice and perform biological assays to determine the outcome of the mutated gene on GnRH development. Over the past year, three studies were finished: 1) Microtubules are a critical part of neuronal polarity and leading process extension, thus microtubule movement plays an important role in neuronal migration. However, the dynamics of microtubules during the forward movement of the nucleus into the leading process (nucleokinesis) is unclear and maybe dependent on the cell type and mode of migration used. In particular, little is known about cytoskeletal changes during axophilic migration, commonly used in anteroposterior neuronal migration. We recently showed that leading process actin flow in migrating GnRH neurons is controld by a signaling cascade involving IP3 receptors, CaMKK, AMPK, and RhoA. In the present study, microtubule dynamics were examined in GnRH neurons. Microtubules translocated forward along the leading process shaft during migration, but reversed direction and moved toward the nucleus when migration stalled. Blocking calcium release through IP3 receptors halted migration and induced the same reversal of microtubule translocation, while blocking cortical actin flow prevented microtubules from translocating toward the distal leading process. Super-resolution imaging revealed that microtubule plus-end tips are captured at the actin cortex through calcium-dependent mechanisms. This work shows that cortical actin flow draws the microtubule network forward through calcium-dependent capture in order to promote nucleokinesis, revealing a novel mechanism engaged by migrating neurons to facilitate movement. 2) Developmental pathologies affecting functional GnRH expression, nasal placode development or GnRH neuronal migration, can translate into various forms of hypogonadism, with lack or delay of reproductive function. In humans, pathology associated with defects in olfactory system development and impaired migration of GnRH neurons is classified as Kallmann syndrome (KS), characterized by anosmia and lack of pubertal onset. Using candidate-gene screening, autozygosity mapping, and whole-exome sequencing in a cohort of 30 individuals with KS, we searched for genes newly associated with KS. We identified homozygous loss-of-function mutations in FEZF1 in two independent consanguineous families each with two affected siblings. The FEZF1 product is known to enable axons of olfactory receptor neurons (ORNs) to penetrate the CNS basal lamina in mice. Because a subset of axons in these tracks is the migratory pathway for GnRH neurons, in FEZF1 deficiency, GnRH neurons also fail to enter the brain. These results indicate that FEZF1 is required for establishment of the central component of the HPG axis in humans. 3) A developmental switch in chloride transporters occurs in most neurons resulting in GABAA mediated hyperpolarization in the adult. However, several neuronal cell subtypes maintain primarily depolarizing responses to GABAA receptor activation. Among this group are gonadotropin-releasing hormone-1 (GnRH) neurons, which control puberty and reproduction. NKCC1 is the primary chloride accumulator in neurons, expressed at high levels early in development and contributes to depolarization after GABAA receptor activation. In contrast, KCC2 is the primary chloride extruder in neurons, expressed at high levels in the adult and contributes to hyperpolarization after GABAA receptor activation. Anion exchangers (AEs) are also potential modulators of responses to GABAA activation since they accumulate chloride and extrude bicarbonate. To evaluate the mechanism(s) underlying GABAA mediated depolarization, GnRH neurons were analyzed for 1) expression of chloride transporters and AEs in embryonic, pre-pubertal, and adult mice 2) responses to GABAA receptor activation in NKCC1-/- mice and 3) function of AEs in these responses. At all ages, GnRH neurons were immunopositive for NKCC1 and AE2 but not KCC2 or AE3. Using explants, calcium imaging and gramicidin perforated patch clamp techniques we found that GnRH neurons from NKCC1-/- mice retained relatively normal responses to the GABAA agonist muscimol. However, acute pharmacological inhibition of NKCC1 with bumetanide eliminated the depolarization/calcium response to muscimol in 40% of GnRH neurons from WT mice. In the remaining GnRH neurons, HCO3- mediated mechanisms accounted for the remaining calcium responses to muscimol. Collectively these data reveal mechanisms responsible for maintaining depolarizing GABAA mediated transmission in GnRH neurons.

Project Start
Project End
Budget Start
Budget End
Support Year
25
Fiscal Year
2015
Total Cost
Indirect Cost
City
State
Country
Zip Code
Constantin, Stephanie (2017) Progress and Challenges in the Search for the Mechanisms of Pulsatile Gonadotropin-Releasing Hormone Secretion. Front Endocrinol (Lausanne) 8:180
Turan, Ihsan; Hutchins, B Ian; Hacihamdioglu, Bulent et al. (2017) CCDC141 Mutations in Idiopathic Hypogonadotropic Hypogonadism. J Clin Endocrinol Metab 102:1816-1825
Constantin, Stephanie; Wray, Susan (2016) Galanin Activates G Protein Gated Inwardly Rectifying Potassium Channels and Suppresses Kisspeptin-10 Activation of GnRH Neurons. Endocrinology 157:3197-212
Klenke, Ulrike; Constantin, Stephanie; Wray, Susan (2016) BPA Directly Decreases GnRH Neuronal Activity via Noncanonical Pathway. Endocrinology 157:1980-90
Hutchins, B Ian; Kotan, L Damla; Taylor-Burds, Carol et al. (2016) CCDC141 Mutation Identified in Anosmic Hypogonadotropic Hypogonadism (Kallmann Syndrome) Alters GnRH Neuronal Migration. Endocrinology 157:1956-66
Forni, Paolo E; Wray, Susan (2015) GnRH, anosmia and hypogonadotropic hypogonadism--where are we? Front Neuroendocrinol 36:165-77
Taylor-Burds, Carol; Cheng, Paul; Wray, Susan (2015) Chloride Accumulators NKCC1 and AE2 in Mouse GnRH Neurons: Implications for GABAA Mediated Excitation. PLoS One 10:e0131076
Klenke, Ulrike; Taylor-Burds, Carol; Wray, Susan (2014) Metabolic influences on reproduction: adiponectin attenuates GnRH neuronal activity in female mice. Endocrinology 155:1851-63
Hutchins, B Ian; Wray, Susan (2014) Capture of microtubule plus-ends at the actin cortex promotes axophilic neuronal migration by enhancing microtubule tension in the leading process. Front Cell Neurosci 8:400
Kotan, L Damla; Hutchins, B Ian; Ozkan, Yusuf et al. (2014) Mutations in FEZF1 cause Kallmann syndrome. Am J Hum Genet 95:326-31

Showing the most recent 10 out of 24 publications