The function of the nervous system relies on synaptic transmission. Synaptic transmission is mediated by calcium-triggered vesicle fusion, followed by vesicle endocytosis that recycles vesicles. Although significant progress has been made in understanding these processes, much remains unknown. My goal is to advance our understanding of these synaptic signaling processes. The progress of the last year is described below. 1. Fusion is thought to open a pore to release vesicular cargoes vital for many biological processes, including exocytosis, intracellular trafficking, fertilization, and viral entry. However, fusion pores have not been observed and thus proved in live cells. Its regulatory mechanisms and functions remain poorly understood. With super-resolution STED microscopy, we observed dynamic fusion pore behaviors in live (neuroendocrine) cells, including opening, expansion, constriction, and closure, where pore size may vary between 0 and 490 nm within 26 milliseconds to seconds (vesicle size: 180-720 nm). These pore dynamics crucially determine the efficiency of vesicular cargo release and vesicle retrieval. They are generated by competition between pore expansion and constriction. Pharmacology and mutation experiments suggest that expansion and constriction are mediated by F-actin-dependent membrane tension and calcium/dynamin, respectively. These findings provide the missing live-cell evidence, proving the fusion-pore hypothesis, and establish a live-cell dynamic-pore theory accounting for fusion, fission, and their regulation. 2. Reprogramming of cancers into normal-like tissues is an innovative strategy for cancer treatment. Recent reports demonstrate that defined factors can reprogram cancer cells into pluripotent stem cells. Glioblastoma multiforme (GBM) is the most common and aggressive malignant brain tumor in humans. Despite multimodal therapy, the outcome for patients with GBM is still poor. Therefore, developing novel therapeutic strategy is a critical requirement. We have developed a novel reprogramming method that uses a conceptually unique strategy for GBM treatment. We screened a kinase inhibitor library to find which candidate inhibitors under reprogramming condition can reprogram GBM cells into neurons. The induced neurons are identified whether functional and loss of tumorigenicity. We have found that mTOR and ROCK kinase inhibitors are sufficient to reprogram GBM cells into neural-like cells and normal neurons. The induced neurons expressed neuron-specific proteins, generated action potentials and neurotransmitter receptor-mediated currents. Genome-wide transcriptional analysis showed that the induced neurons had a profile different from GBM cells and were similar to that of control neurons induced by established methods. In vitro and in vivo tumorigenesis assays showed that induced neurons lost their proliferation ability and tumorigenicity. Moreover, reprogramming treatment with ROCK-mTOR inhibitors prevented GBM local recurrence in mice. This study indicates that ROCK and mTOR inhibitors-based reprogramming treatment prevents GBM local recurrence. Currently ROCK-mTOR inhibitors are used as anti-tumor drugs in patients, so this reprogramming strategy has significant potential to move rapidly toward clinical trials.

Project Start
Project End
Budget Start
Budget End
Support Year
15
Fiscal Year
2018
Total Cost
Indirect Cost
City
State
Country
Zip Code
Yuan, Jie; Zhang, Fan; Hallahan, Dennis et al. (2018) Reprogramming glioblastoma multiforme cells into neurons by protein kinase inhibitors. J Exp Clin Cancer Res 37:181
Shin, Wonchul; Ge, Lihao; Arpino, Gianvito et al. (2018) Visualization of Membrane Pore in Live Cells Reveals a Dynamic-Pore Theory Governing Fusion and Endocytosis. Cell 173:934-945.e12
Wen, Peter J; Grenklo, Staffan; Arpino, Gianvito et al. (2016) Actin dynamics provides membrane tension to merge fusing vesicles into the plasma membrane. Nat Commun 7:12604
Wu, Xin-Sheng; Lee, Sung Hoon; Sheng, Jiansong et al. (2016) Actin Is Crucial for All Kinetically Distinguishable Forms of Endocytosis at Synapses. Neuron 92:1020-1035
Zhao, Wei-Dong; Hamid, Edaeni; Shin, Wonchul et al. (2016) Hemi-fused structure mediates and controls fusion and fission in live cells. Nature 534:548-52
Baydyuk, Maryna; Xu, Jianhua; Wu, Ling-Gang (2016) The calyx of Held in the auditory system: Structure, function, and development. Hear Res 338:22-31
Park, Soonhong; Ahuja, Malini; Kim, Min Seuk et al. (2016) Fusion of lysosomes with secretory organelles leads to uncontrolled exocytosis in the lysosomal storage disease mucolipidosis type IV. EMBO Rep 17:266-78
Baydyuk, Maryna; Wu, Xin-Sheng; He, Liming et al. (2015) Brain-derived neurotrophic factor inhibits calcium channel activation, exocytosis, and endocytosis at a central nerve terminal. J Neurosci 35:4676-82
Wu, Ling-Gang; Hamid, Edaeni; Shin, Wonchul et al. (2014) Exocytosis and endocytosis: modes, functions, and coupling mechanisms. Annu Rev Physiol 76:301-31
Chiang, Hsueh-Cheng; Shin, Wonchul; Zhao, Wei-Dong et al. (2014) Post-fusion structural changes and their roles in exocytosis and endocytosis of dense-core vesicles. Nat Commun 5:3356

Showing the most recent 10 out of 25 publications