We want to understand how alterations in cortical functional domains induced by stroke lead to changes in the hemodynamic response to increased neural activity. This will allow us to refine the notion that the cerebrovasculature is built to support the functional organization of the cortex, and enable development of a better model of inferring about the flow of neuronal communication from careful analysis of the spatiotemporal features of the hemodynamic response. For this, we will develop focal ischemic models based on spatially targeted applications of vasoconstricting peptides such as endothelin-1 (ET-1) to test the relevance of different sub-regions of the cortex and, in particular, of individual functional areas (e.g. individual face patches or the representation of individual digits) in dictating the spatiotemporal characteristics of the hemodynamic response. We will use high-resolution MRI of the cortical cytoarchitecture to plan and chose the target sub-domains within the cortex to be made ischemic, and compare the post-ischemia functional data with those obtained from the same animals pre-ischemia. We will also compare cerebrovascular resistance and vascular territory maps obtained at both states. Because the stroke area will be made small, it is possible that these maps will not change, but task-induced hemodynamic responses will be significantly different due to the region-selective death of neuronal cells caused by stroke. These experiments will provide a better understanding of how the architecture of the vascular tree influences the spatiotemporal features of the hemodynamic response. We used the spontaneously hypertensive rat (SHR) and its normotensive control WKY to evaluate the effects of an intracortical injection of ET-1. ET-1 produces a larger infarct volume in SHR than in WKY. Both pre- and post-treatment of the animals with JZL184, a powerful and specific inhibitor of the enzyme monoacylglycerol lipase (MAGL) significantly reduces the infarct volume induced by ET-1, thus establishing that MAGL as an important therapeutic target for stroke. In addition, MAGL inhibition significantly improved neurological outcome post-ischemia. MAGL hydrolyzes 2-arachidonoyl glycerol (2-AG), the most abundant endogenous cannabinoid in the brain, into arachidonic acid (AA), an important precursor of pro-inflammatory prostaglandins and leukotrienes. 2-AG exhibits anti-inflammatory and neuroprotective properties not only through modulating the signaling of cannabinoid receptors, but also by controlling AA release. Thus we hypothesized that MAGL inhibition might be a novel anti-inflammatory and neuroprotective strategy for neurological disorders, including ischemic stroke. Inhibition of MAGL leads to suppressed neuroinflammation, as measured by a significant reduction in the number of activated microglia in the ischemic core. Thus, our results suggest that MAGL alone contributes to neuropathology of cerebral ischemia, and thus is a promising therapeutic target for the treatment of ischemic stroke. To validate the work in the primate brain, it will be exciting to reproduce the same above experiments in marmosets, and we intend to do so just as soon as we finish the rodent study. This study is now submitted for publication and is under review.

Project Start
Project End
Budget Start
Budget End
Support Year
13
Fiscal Year
2017
Total Cost
Indirect Cost
City
State
Country
Zip Code
Choi, Sang-Ho; Arai, Allison L; Mou, Yongshan et al. (2018) Neuroprotective Effects of MAGL (Monoacylglycerol Lipase) Inhibitors in Experimental Ischemic Stroke. Stroke 49:718-726
Silva, Afonso C (2017) Anatomical and functional neuroimaging in awake, behaving marmosets. Dev Neurobiol 77:373-389
Papoti, Daniel; Yen, Cecil Chern-Chyi; Hung, Chia-Chun et al. (2017) Design and implementation of embedded 8-channel receive-only arrays for whole-brain MRI and fMRI of conscious awake marmosets. Magn Reson Med 78:387-398
Park, Jung Eun; Zhang, Xian Feng; Choi, Sang-Ho et al. (2016) Generation of transgenic marmosets expressing genetically encoded calcium indicators. Sci Rep 6:34931
Root, David H; Wang, Hui-Ling; Liu, Bing et al. (2016) Glutamate neurons are intermixed with midbrain dopamine neurons in nonhuman primates and humans. Sci Rep 6:30615
Santisakultarm, Thom P; Kersbergen, Calvin J; Bandy, Daryl K et al. (2016) Two-photon imaging of cerebral hemodynamics and neural activity in awake and anesthetized marmosets. J Neurosci Methods 271:55-64
Kang, B-T; Leoni, R F; Silva, A C (2014) Impaired CBF regulation and high CBF threshold contribute to the increased sensitivity of spontaneously hypertensive rats to cerebral ischemia. Neuroscience 269:223-31
Papoti, Daniel; Yen, Cecil Chern-Chyi; Mackel, Julie B et al. (2013) An embedded four-channel receive-only RF coil array for fMRI experiments of the somatosensory pathway in conscious awake marmosets. NMR Biomed 26:1395-402
Mazzetto-Betti, Kelley C; Leoni, Renata F; Pontes-Neto, Octavio M et al. (2013) Quantification of BOLD fMRI parameters to infer cerebrovascular reactivity of the middle cerebral artery. J Magn Reson Imaging 38:1203-9
Kang, Byeong-Teck; Leoni, Renata F; Kim, Dong-Eog et al. (2012) Phenylephrine-induced hypertension during transient middle cerebral artery occlusion alleviates ischemic brain injury in spontaneously hypertensive rats. Brain Res 1477:83-91

Showing the most recent 10 out of 22 publications