We have performed extensive characterization of the 21 Bush-era human embryonic stem cells and deposited the data with NCBI GEO for public access. We have created a user-friendly gene expression search engine which allows a casual user to interrogate the data for their particular gene of interest. In our mission to facilitate pluripotent stem cell research, we have performed in-depth characterization of a control induced pluripotent stem cell (iPSC) line, BC1. This includes FACS analysis and immunocytochemistry as well as gene expression microarray analysis. In collaboration with the NIH-CRM, we generated iPSCs derived from neuronal precursors differentiated from H1 ES cell lines and compared their gene expression and methylation profiles to the parental line. This provides a direct comparison of ESCs to iPSCs as all lines have the same genome. Analysis shows no global difference although there may be more subtle effects to be determined. In collaboration with NIH-CRM, 5 transgenic hESC lines, which express traceable markers from cell type-specific promoters, have been generated using a Zinc Finger nuclease-assisted gene-targeting method to integrate the transgenes into AAVS1, one of the known safe harbor sites in the human genome. Each transgene contains a gene for ZS green and a drug-selection marker. Correct transgene integration as well as normal karyotype has been confirmed for each line and expression of ZS green from appropriate cell types has been confirmed in 2 lines. All lines will be deposited with WiCell shortly to facilitate distribution to the community. We have extended our studies on the novel non-colony type (NCM) monolayer method for pluripotent cell culture using different small molecules and alternative substrates. We have demonstrated improved efficiency of transfection or transduction of plasmid DNAs, lentiviral particles, and short oligonucleotide-based microRNAs using this method. We will continue to improve the method for application to high thoughput and scalability for drug screening and therapeutic use. In addition, to generate homogeneous populations of specific cell types efficiently and reproducibly, directed differentiation has been attempted starting from NCM culture. These differentiation strategies do not include the formation of embryoid bodies, which are a major source of heterogeneity in many differentiation protocols. Several of the traceable transgenic hESC lines described above have been successfully differentiated into neural precursor cells (endoderm), beating cardiomyocytes (mesoderm), and SOX17-positive cells (endoderm) with relatively high efficiency and homogeneity. Further optimization and refinement of the differentiation protocols will be pursued. In terms of bringing pluripotent stem cells to the clinic, we have been evaluating novel xeno-free substrates, media and small molecule inhibitors as well as non-integrating methods of reprogramming. These methods include Sendai virus and microRNA boosted mRNA- based reprogramming. We will also be evaluating episomal plasmid-based reprogramming strategies in the future and testing novel strategies to reprogram blood cells. Finally, we have been involved in mentoring and teaching standard and feeder-free, pluripotent stem cell culture, assisting and advising on the generation of iPSCs from patient samples as well as assisting and advising on differentiation strategies as requested. We update the SCU website with protocols and information as it becomes available to aid other researchers in their studies.

Project Start
Project End
Budget Start
Budget End
Support Year
10
Fiscal Year
2013
Total Cost
$774,939
Indirect Cost
City
State
Country
Zip Code
Chen, Kevin G; Mallon, Barbara S; Park, Kyeyoon et al. (2018) Pluripotent Stem Cell Platforms for Drug Discovery. Trends Mol Med 24:805-820
Ou, Jingxing; Ball, John M; Luan, Yizhao et al. (2018) iPSCs from a Hibernator Provide a Platform for Studying Cold Adaptation and Its Potential Medical Applications. Cell 173:851-863.e16
Vallabhaneni, Haritha; Lynch, Patrick J; Chen, Guibin et al. (2018) High Basal Levels of ?H2AX in Human Induced Pluripotent Stem Cells Are Linked to Replication-Associated DNA Damage and Repair. Stem Cells :
Jiang, Xueying; Detera-Wadleigh, Sevilla D; Akula, Nirmala et al. (2018) Sodium valproate rescues expression of TRANK1 in iPSC-derived neural cells that carry a genetic variant associated with serious mental illness. Mol Psychiatry :
Nandal, Anjali; Mallon, Barbara; Telugu, Bhanu P (2017) Efficient Generation and Editing of Feeder-free IPSCs from Human Pancreatic Cells Using the CRISPR-Cas9 System. J Vis Exp :
Horikawa, Izumi; Park, Kye-Yoon; Isogaya, Kazunobu et al. (2017) ?133p53 represses p53-inducible senescence genes and enhances the generation of human induced pluripotent stem cells. Cell Death Differ 24:1017-1028
Lin, Yongshun; Linask, Kaari L; Mallon, Barbara et al. (2016) Heparin Promotes Cardiac Differentiation of Human Pluripotent Stem Cells in Chemically Defined Albumin-Free Medium, Enabling Consistent Manufacture of Cardiomyocytes. Stem Cells Transl Med :
Bhadriraju, Kiran; Halter, Michael; Amelot, Julien et al. (2016) Large-scale time-lapse microscopy of Oct4 expression in human embryonic stem cell colonies. Stem Cell Res 17:122-9
Lee, Chun-Ting; Chen, Jia; Kindberg, Abigail A et al. (2016) CYP3A5 Mediates Effects of Cocaine on Human Neocorticogenesis: Studies using an In Vitro 3D Self-Organized hPSC Model with a Single Cortex-Like Unit. Neuropsychopharmacology :
Cerbini, Trevor; Funahashi, Ray; Luo, Yongquan et al. (2015) Transcription activator-like effector nuclease (TALEN)-mediated CLYBL targeting enables enhanced transgene expression and one-step generation of dual reporter human induced pluripotent stem cell (iPSC) and neural stem cell (NSC) lines. PLoS One 10:e0116032

Showing the most recent 10 out of 25 publications