This EARS (Enhancing Access to the Radio Spectrum) program was founded in response to the 2010 Presidential Memorandum on Unleashing the Wireless Broadband Revolution mandated by Congress as part of the National Broadband Plan. It was referenced in 2010 State of the Union and later on the Middle Class Tax Relief and Job Creation Act of 2012 (More than 1/3 of the bill deals with radio spectrum), the PCAST 2012 Report [President's Council of Advisors on Science and Technology] (which calls for vastly increased use of spectrum sharing) and the 2013 Presidential memo (Expanding America's Leadership in Wireless Innovation). The aim of this program is to identify bold new concepts with the potential to contribute to significant improvements in the efficiency of radio spectrum utilization, protection of passive sensing services, and in the ability for traditionally underserved Americans to benefit from current and future wireless-enabled goods and services. The impact is large on the economics of the Nation as seen on the last FCC bidding of 65MHz of the spectrum for over $45 billion early in 2015. It will enable access to science, engineering, industry, civilian and military users of the radio frequency (RF) spectrum.

Demand for wireless broadband has soared due to technological innovation, such as 4G mobile services, and the rapid increase in wireless internet. This demand would require the utilization of frequencies over a bandwidth that has been traditionally slated for radio telescopes. This frequency infringement may interfere with reception and interpretation of astronomical data and, as such, compromise the search and discoveries of extraterrestrial intelligence. The project puts forward coexistence strategies where wireless users cause minimum interference to astronomical observations.

The project aims at achieving the coexistence strategies by developing interference mitigation techniques that factor in the high-elevation of the look direction of the telescope compared to low-elevation angles of signals emitted by base-stations and wireless systems. A co-existence strategy calls for authorized broadcast stations and wireless transmitters to cooperate with radio telescopes by reporting their locations and providing properties of their signal structures. Prior knowledge of interference location simplifies its nulling and removal by telescope array of multiple units. On the other hand, the distinction in signal characteristics between astronomical events and those of digital communications enables effective cooperative as well as non-cooperative interference identification and suppression. The project has the potential to advance spectrum sharing and utilization and therefore enhance the future capacity for U.S. industry and academic institutions in this area of research and development.

Agency
National Science Foundation (NSF)
Institute
Division of Astronomical Sciences (AST)
Type
Standard Grant (Standard)
Application #
1547420
Program Officer
Jon Williams
Project Start
Project End
Budget Start
2015-09-01
Budget End
2020-08-31
Support Year
Fiscal Year
2015
Total Cost
$650,000
Indirect Cost
Name
Villanova University
Department
Type
DUNS #
City
Villanova
State
PA
Country
United States
Zip Code
19085