The octopus is a social animal, with high intelligence and problem-solving skills, that is very distant from humans in terms of its evolution. This project aims to fabricate neuroelectric sensors and experimental protocols that would enable studying visual and higher level cognitive processes in the octopus while they are engaged in natural behaviors in an underwater environment. This will necessitate development of new engineering solutions for crafting electroencephalography (EEG) sensors that can record signal underwater, new solutions for removing noise artifacts from these highly complicated recordings, as well as careful design of experiments that could study such behaviors in a virtual-reality environment. While the brain of the octopus is very different from that of the human, it does support well-defined cognitive functions. Therefore, understanding whether and how octopuses' brains implement processes such as learning, attention, habituation, and surprise can produce new and important understandings of how neurobiological systems can support function. This research might reveal that the neural substrates of cognitive function in the octopus are organized according to principles that differ drastically from those found in in humans.
This EAGER project has several aims. It will develop the first underwater EEG, first testing well-validated paradigms on humans performing task underwater and benchmarking against known waveforms. The electrodes will be constructed so that they do not corrode in salt water. It will also develop high-quality virtual reality stimulation that could impact octopuses' behavior in an underwater environment. It will utilize EEG frequency-tagging techniques to determine processing of environmental stimulus by the octopus. This will allow studying whether octopuses present characteristic responses that are analogous to surprise, adaptation, working memory and attention effects (in primates and other vertebrates). The study will also allow answering how and in what manner do octopuses sleep. All data, artifacts and modeling software will be made publicly available and constitute an important resource for the community. The results of this study could impact our general understanding of how brains support complex cognitive functions, with direct relevance to artificial intelligence efforts.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.