Pennsylvania State University, University Park CBET 0828648

Intellectual merit

The primary objective of this project is to genetically engineer algae for the production of renewable and ecologically sustainable petroleum grade oils that are suitable for processing into combustible fuels (octanes suitable for internal combustible engines) and other petroleum-based products. This project leverages the Principal Investigators (PIs) recent success in isolating the genes coding for the biosynthesis of rather unique branched-chain, unsaturated hydrocarbons (methylated triterpenes), and the development of novel tools to engineer metabolic shunts for high-level terpene production in terrestrial plants. The PIs' specific aims are to fully characterize these unique triterpene biosynthetic enzymes, to assess the capacity of transgenic algae engineered with the respective genes for their ability to accumulate high-levels of the corresponding petroleum-based oils, and finally to evaluate bioreactor design and operational strategies for growing high density algal cultures and improving the capture efficiency for solar radiation. The proposed collaborative research brings together genetic engineering proof-of-principle with novel process engineering advances in algae culture required to evaluate these alterative platforms of agri-culture and alga-culture for commodity-scale displacement of fossil fuels with renewable, green-house-gas neutral biofuels.

Broader impacts

The proposed work represents a strong interdisciplinary effort between chemists, biochemists and engineers, involving undergraduate and graduate students and postdoctoral associates, in an effort to shed new insights into how metabolic pathways might be engineered for enhanced value using emerging technologies.

Project Start
Project End
Budget Start
2008-11-01
Budget End
2011-10-31
Support Year
Fiscal Year
2008
Total Cost
$249,925
Indirect Cost
Name
University of Kentucky
Department
Type
DUNS #
City
Lexington
State
KY
Country
United States
Zip Code
40506