Broader Significance & Importance Training and retraining the movement of individuals suffering loss of motor ability due to stroke is a challenging task. In many cases, only partial success is accomplished after long training sessions. Given the limitations of recovery for post-stroke patients, it is imperative that better tools and methods for retraining be developed. Even though several training hypotheses exist, such as need for an exact repetition of the training pattern, the solutions are still to be found. Overcoming some of these obstacles is the goal of this proposal. Recent studies show a direct link between human action perception and action execution. There is some evidence that the visual observation of human actions has an effect on the movement of the observer. This priming effect is reduced, or not present, when the motion is executed by a non-human device, such as a robot. This proposal aims to develop and test a novel wearable system for the training of the human arm. The system will allow the user to perceive the device as part of their upper limb (hence closing the perception/action loop). Training protocols based on observational learning findings will be implemented with the ARWED in order to develop it as rehabilitation training device for motor recovery in post-stroke patients.

Technical Abstract

The intellectual merit centers on exploiting the link between action-observation and action execution in order to develop training protocols to facilitate rehabilitation following stroke. Currently, there are limited systems that utilize virtual reality in the relearning of biological movements. The proposed development of augmented wearable system (ARWED) requires solving several challenges in computer vision/modeling, and robot kinematic mapping. Testing the effectiveness of the device on priming the perception-action effect will require combined expertise from the areas of human kinematics, signal analysis, virtual reality, robotic fault recovery theory and rehabilitation. Therefore, the theoretical contributions emerging from this multidisciplinary collaborative research team will advance knowledge and understanding not only within the medical field, but also across the above-mentioned research areas. The broader impact is based on the characteristics of the device to be developed, with an expanded ability in the training and re-training of patients with motor disabilities. Efficient design and manipulation will make the proposed ARWED system a reliable solution, which will be broadly utilized by medical professionals working in rehabilitation, sports therapy and convalescence. The proposed research will provide effective tools for the training and physical rehabilitation of patients with limb limitations at any scale, ranging from individuals suffering partial loss of motor ability to those with severe limitations in mobility due to strokes, birth defects or accidents. Motor learning theory shows that reducing feedback during practice benefits long term retention of motor skill training. Observational learning may offer greater benefits regarding transfer to ADLs, in comparison to robotic-based stroke training. Thus, a success indicator for these patients would be the beneficial transfer of training from the un-affected to affected limb or vice-versa. The ARWED system is expected to advance significantly the fundamentals of engineering and scientific knowledge, by implementing the device in experimental and educational work on cognition, telemanipulation and virtual reality. The medical community would also benefit from the development of the ARWED by furthering the understanding of how training using technology may enhance the recovery of motor control in diverse populations while providing a novel intervention that may prove more effective than what is currently available. The collaborative nature of the research team will lead to the education of undergraduate and graduate students in the areas of Engineering and Kinesiology. In the long run, the outcomes of the proposal will facilitate the communication between students that want to enter Physical and Occupational Therapy professions and those that want to design and develop mechanical devices that can aid in human recovery following neurological injury.

Project Start
Project End
Budget Start
2014-08-15
Budget End
2019-07-31
Support Year
Fiscal Year
2014
Total Cost
$83,212
Indirect Cost
Name
California State University-Fullerton Foundation
Department
Type
DUNS #
City
Fullerton
State
CA
Country
United States
Zip Code
92831