Microbes can make organic molecules with complex structures. Many of these molecules or their analogs are central ingredients in a variety of products, but the diversity of these molecules is limited by the range of the reactions catalyzed by natural enzymes. Engineering cells to produce artificial metalloenzymes (AMEs) will expand the range of possible reactions. Novel biosynthetic pathways will be created by complementing natural enzymes with AMEs. Graduate students and postdoctoral associates will be trained in this convergent field of synthetic chemistry and synthetic biology. Outreach activities to encompass topics related to artificial biosynthesis will be offered to underserved high school students and teachers, as well as to K-8 students.

This project will build upon the general concept of creating artificial biosynthetic pathways containing artificial metalloenzymes and preliminary results showing the feasibility of creating these pathways in bacteria. We will increase the numbers and types of microorganisms that can host the chemistry catalyzed by artificial metalloenzymes to expand the range of natural products that react with AMEs; expand the types of metallo-cofactors that are incorporated intracellularly into AMEs to increase the scope of unnatural reactions in these pathways; and combine the abiotic chemistry with natural biosynthesis in varying sequences. Specifically, we will 1) introduce AMEs into Streptomyces strains and test activity on heterologously produced terpenes and polyketides; 2) incorporate new cofactors into AMEs expressed in E. coli and Streptomyces; 3) broaden the scope of transformations catalyzed by AMEs in the artificial biosynthetic pathways to encompass abiotic C-H bond functionalizations; 4) create pathways in which the unnatural chemistry occurs in the middle of the artificial biosynthesis; and 5) elucidate the pathways for diazo-containing small molecules. By doing so, we will generate the fundamental knowledge and demonstrate guiding principles to create artificial biosynthetic pathways that convert simple carbon sources to valuable unnatural products in whole microorganisms.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2020-10-01
Budget End
2024-09-30
Support Year
Fiscal Year
2020
Total Cost
$904,851
Indirect Cost
Name
University of California Berkeley
Department
Type
DUNS #
City
Berkeley
State
CA
Country
United States
Zip Code
94710