The global COVID-19 pandemic has created major impacts to public health and the economy. Currently, there are over two million confirmed cases of COVID-19 worldwide, with nearly 700,000 cases in the United States. Limited testing capacity and asymptomatic infections have resulted in significant unknowns in the actual number of infections by SARS-CoV2 (the virus responsible for COVID-19). Therefore, alternative methods of tracking the SARS-CoV2 are urgently needed. The goal of this RAPID project monitor public health by surveilling SARS-CoV2 presence in wastewater in four cities in CA, NC, Washington DC, and TX. Samples will be gathered before, during, and after infection peaks in these four cities, creating a data collection essential to understanding the current pandemic. Coronavirus levels will be determined using methods that target specific parts of the virus. The wastewater data will be compared to data from the healthcare system to determine if testing wastewater can help predict COVID-19 presence in a community. Knowledge gained from this study will advance the understanding of how wastewater testing can be used to guide healthcare resources to individual communities, reducing long-term economic disruption of the larger community during future outbreaks.

Limited diagnostic testing and asymptomatic infections result in large uncertainty in the actual extent of SARS-CoV2 infections. Analysis of municipal wastewater is equivalent to analyzing a pooled sample from all community members for a community-scale measure of infection dynamics. A coordinated effort across four major geographically diverse metropolitan areas, Orange County, Raleigh, Washington, and DC, Houston will address knowledge gaps in the use of wastewater surveillance as a public health monitoring tool. Raw wastewater and primary solids will be collected from four municipal wastewater treatment plants throughout the infection period to quantify SARS-CoV2, seasonal influenza, and an enteric virus in the samples. Using identical experimental protocols and incorporating other viruses into this analysis will validate and expand the understanding of wastewater surveillance as a public health monitoring tool for various human viruses in addition to SARS-CoV2. The team has public health and wastewater treatment expertise to examine how wastewater data relates to clinical data. The results from this study will help to characterize the full potential of wastewater surveillance as a public health monitoring tool and help prepare public health officials for future outbreaks. Results and methods will be shared in publicly available using FAIR (findable, accessible, interoperable, and reusable) protocols to assist the larger network of researchers studying SARS-CoV2 in wastewater.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
North Carolina State University Raleigh
United States
Zip Code