Abstract - Subramaniam - 9816969 This research program will rationally exploit supercritical (sc) reaction media to develop new, environmentally-safer and selective processes for such important catalytic reactions as acid catalyzed 1-butene/isobutane alkylation to produce gasoline, skeletal isomerization of n-butane to isobutane and selective functional groups hydrogenations on supported catalysts. The goals include (i) the optimization of the cosolvent-based supercritical solid-acid alkylation process (recently developed in our laboratory) to obtain enhanced alkylate yields at high butene conversion; (ii) the application of the in situ sc decoking concept to extend the life of low-temperature, solid-acid skeletal isomerization catalysts; and (iii) the optimization of solid-catalyzed sc hydrogenation process by pressure-tuning solvent and transport properties in the near-critical region to achieve desired product selectivity and hydrogenation rates. Besides providing a better fundamental understanding of the physicochemical processes underlying heterogeneous fluid/solid catalysis in sc media, the catalyst systems developed in this research are likely to impact the refining and chemical industries by minimizing chemical waste while optimizing catalyst selectivity, efficiency and lifetime. Specifically, solid-acid catalyzed alkylation and isomerization processes with enhanced activity and product yields could emerge as commercially-viable, environmentally-safer alternatives to liquid-acid based processes. Continuous solid-catalyzed hydrogenation in sc media - characterized by pressure-tunable selectivities minimizing waste formation, enhanced reaction rates, and inherently safer operation due to decreased holdup of hazardous reagents in the reactor - could emerge as an attractive process for functional groups' hydrogenations, a subject critical to the fine chemicals, pharmaceutical and food industries.