This project deals with models of wireless multi-terminal networks incorporating practical constraints such as individual links that experience fading, applications that are delay-sensitive, network communication that is subject to broadcast and interference constraints and nodes that are constrained to operate in half-duplex mode. The network is assumed to be static for the duration of the message, but can change from one message to the next and channel-state information is assumed to be present only at the receiver. In such settings, cooperative communication in which intermediate nodes facilitate communication between a particular source-sink pair, is key to efficient operation of the network.

A key goal of any communication system, is one of achieving an optimal rate-reliability tradeoff. The diversity-multiplexing gain tradeoff (DMT) determines the tradeoff between relevant first-order approximations to the rate and reliability of communication. The DMT of point-to-point communication links has been extensively studied and signal sets are available that are optimal under any statistical distribution of the fading channel. There now exist protocols and codes for two-hop relay networks that come close to achieving the corresponding min-cut upper bound on DMT. Goals of this project include: 1) determining the DMT of various classes of multiterminal networks ranging from broadcast, cooperative-broadcast and multiple-access channel networks to layered multi-hop networks; 2) identifying the classes of networks for which the DMT of the network is given by the DMT of the min-cut; 3) assessing the impact of asynchronous operation of the network, as well as of the presence of feedback along one or more links in the network; 4) the construction of codes with lesser decoding complexity.

Project Start
Project End
Budget Start
2010-08-15
Budget End
2014-07-31
Support Year
Fiscal Year
2009
Total Cost
$523,416
Indirect Cost
Name
University of Southern California
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90089