The research objective of this project is to evaluate whether a novel framework proposed by the PIs can progressively reconstruct a reinforced concrete frame structure into an object-oriented geometric model, for the purpose of automating the Building Information Model (BIM) making process of constructed facilities in a cost-effective manner. According to the project's framework, the modeler videotapes the structure from all accessible angles to minimize occlusions. During this stage, the structural members (concrete columns and beams in this study) in the resulting stream of images are detected and their occupying region is marked in all images. These regions are used to establish correspondence at the object level across images, and solve the rough registration problem efficiently. Line-based structure from motion is then applied to the result to produce a rendered 3D view of the structure with the recognized regions marked. This loops back to the detection of structural members, which can now be also performed on the spatial data covered by the visually marked regions. The result is more robust element detection (by combining visual and spatial detection results), and consequently improved element matching and reconstruction. The resulting object-oriented model is expected to be an accurate 3D representation of the structure with the load bearing linear members detected. This model is provided to the modeler, who can then use it to complete the model making process. As a result, the key intellectual merit of this framework lies in its reciprocal use of the results; the video recognition of building elements is used to assist the 3D reconstruction of their spatial data, while the 3D reconstruction provides the spatial data needed for spatial recognition to assist in more robust element detection.

The immediate advantage that will result from this work is the ability to automate the modeling of frequent elements during the as-built model generation process, which translates to tremendous time savings for the modeler. The National Academy of Engineering recently listed Restoring and Improving Urban Infrastructure as one of the Grand Challenges of Engineering in the 21st century. Two of the greatest issues that cause this grand challenge are the need for more automation in construction, through advances in computer science and robotics, and the lack of viable methods to map and label existing infrastructure. Over two thirds of the effort needed to model even simple infrastructure is spent on manually converting surface data to a 3D model. The result is that as-built models are not produced for the vast majority of new construction and retrofit projects, which leads to rework and design changes that cost up to 10 percent of the installed costs. Any efforts towards automating the modeling process will increase the percentage of infrastructure projects being modeled and, considering that construction is a $900 billion industry, each 1 percent of increase can lead up to $900 million in savings.

Project Start
Project End
Budget Start
2010-09-01
Budget End
2015-08-31
Support Year
Fiscal Year
2010
Total Cost
$306,043
Indirect Cost
Name
Georgia Tech Research Corporation
Department
Type
DUNS #
City
Atlanta
State
GA
Country
United States
Zip Code
30332