This research will produce novel, rigorous and integrative methods that will contribute to society's capacity for effectively managing city-scale electricity systems during periods of extreme heat and drought. The modern electric grid, which includes both electricity consumers and producers, faces significant challenges and uncertainties, including increased frequency and intensity of heat waves and droughts. Concurrently, the processes underlying electricity production and consumption are becoming more complex, due in part to advances in electric grid-connected technologies and the demand-side management programs that control them. This research will improve knowledge of city-specific future extreme heat and drought scenarios, as well as quantification of the impact of extreme events under these scenarios on a city's electricity consumption and production. Findings from this research have the potential to significantly impact the way cities and electric utility operators manage electric grids under extreme heat and drought conditions.

This project addresses vital links between climate modeling, consumption and production, and seeks to contribute to the following scientific advancements: 1) development of effective methods for generating refined future extreme heat and drought scenarios utilizing disparate sources of data of varying fidelity, such as historical observations; 2) development of a flexible electricity consumption model integrated with demand-side management strategies using bottom-up energy and demand modeling methods; 3) development of a data-driven stochastic optimization method for robust power-generation decision strategies that considers various sources of uncertainty, including weather and the consumption and production of electricity.

Project Start
Project End
Budget Start
2019-08-16
Budget End
2021-08-31
Support Year
Fiscal Year
2020
Total Cost
$205,511
Indirect Cost
Name
Michigan State University
Department
Type
DUNS #
City
East Lansing
State
MI
Country
United States
Zip Code
48824