Cooling currently consumes about 9 percent of commercial building energy in US, and contributes significantly to urban heat island effects. As population continues to grow and shift to the city, precipitation and temperature patterns have changed so much that they add considerable stress to keep buildings and cities cool. Established architectural treatments are not adaptive to the changing environmental conditions unless a mechanical control is added. This EArly-concept Grant for Exploratory Research (EAGER) project will bring together a highly collaborative and synergistic team of architects, mechanical engineers, and materials scientists to exploit a high risk-high payoff approach, kirigami (cutting and folding), where reconfigurability and cooling processes are materialized in building envelopes that sense and actuate in response to environmental change (e.g. heat, humidity, and wind). The building envelopes will harvest dew water in the early morning and later release it via evaporation, thus, dramatically reducing the cooling load of building elements. The research project will offer a rich and diverse set of problems to excite students at all levels and general public about STEAM, and raise their awareness to address building energy needs.

This EAGER project aims to create an innovative building envelope for water condensation and evaporative cooling by considering the ambient temperature, humidity, and wind loads (both indoor and outdoor), as well as the surface property and shape of the novel building materials, achieving the water collection efficiency greater than 35 g/m2.h on aluminum coated polyester sheets, and temperature reduction of at least 2-3oC on daily condensation-evaporation cycles in summer. Specifically, the researchers will 1) perform mesoscale simulation, testing, and energy evaluation on various kirigami structures to identify suitable building envelope designs; 2) Develop simple hygro-thermal models to calculate evapotranspiration in daily condensation-evaporation cycles; 3) Integrate surface coatings to the kirigami structures and test water collection efficiency and temperature change in the daily cycle and comparing with theoretical values. 4) Guided by computation modeling and finite element simulation, optimize the cut patterns to improve applicability of the building envelopes in an outdoor setting. The designed envelopes are potentially transformative: they are passively responsive yet dynamically tunable, hence requiring low maintenance; multifunctional in ways that are not possible in existing building treatments; and generic, scalable, and modularizable.

Project Start
Project End
Budget Start
2019-09-01
Budget End
2020-08-31
Support Year
Fiscal Year
2020
Total Cost
$21,265
Indirect Cost
Name
North Carolina State University Raleigh
Department
Type
DUNS #
City
Raleigh
State
NC
Country
United States
Zip Code
27695