The objective of this research is to develop advanced distributed monitoring and control systems for civil infrastructure. The approach uses a cyber-physical co-design of wireless sensor-actuator networks and structural monitoring and control algorithms. The unified cyber-physical system architecture and abstractions employ reusable middleware services to develop hierarchical structural monitoring and control systems.

The intellectual merit of this multi-disciplinary research includes (1) a unified middleware architecture and abstractions for hierarchical sensing and control; (2) a reusable middleware service library for hierarchical structural monitoring and control; (3) customizable time synchronization and synchronized sensing routines; (4) a holistic energy management scheme that maps structural monitoring and control onto a distributed wireless sensor-actuator architecture; (5) dynamic sensor and actuator activation strategies to optimize for the requirements of monitoring, computing, and control; and (6) deployment and empirical validation of structural health monitoring and control systems on representative lab structures and in-service multi-span bridges. While the system constitutes a case study, it will enable the development of general principles that would be applicable to a broad range of engineering cyber-physical systems.

This research will result in a reduction in the lifecycle costs and risks related to our civil infrastructure. The multi-disciplinary team will disseminate results throughout the international research community through open-source software and sensor board hardware. Education and outreach activities will be held in conjunction with the Asia-Pacific Summer School in Smart Structures Technology jointly hosted by the US, Japan, China, and Korea.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Type
Standard Grant (Standard)
Application #
1035773
Program Officer
Gurdip Singh
Project Start
Project End
Budget Start
2010-10-01
Budget End
2014-09-30
Support Year
Fiscal Year
2010
Total Cost
$300,000
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130