Spectrum opportunities in white space hinge heavily on the traffic patterns of the licensed users (PUs), and vary across space, time, and frequency. Making a paradigm shift, this project advocates to leverage traffic shaping and mobility patterns of PUs for inducing predictable structures of spectrum holes in the spatio-temporal domain, which in turn enables more efficient spectrum access by cognitive radio users. With such a common thread, this project will 1) study joint traffic shaping and network coding for PUs, as a spectrum shaper, to induce predictive structures in spectrum holes; 2) investigate SUs? cognitive transmissions via adaptive file fragmentation and predetermined file fragmentation that can match the characteristics of spectrum opportunities discovered on the fly; and 3) explore cognitive routing via exploiting PU-mobility predictability.
Efficient spectrum usage will facilitate a wide variety of scientific and engineering applications and result in a significant impact on the society at large. This research will open a new direction for spectrum shaping that induces predictable structures of spectrum opportunities, which can then be exploited by SUs for effective cognitive communications. The findings will advance the state-of-the-art of cognitive radio networking and spur a new line of thinking. Another major task of this project is to integrate research with educational activities. In particular, the PIs will continue to involve under-represented and minority students in research.