This project, acquiring a 3D photogrammetric light stage instrument with automatic synchronization and registration for instantaneous scanning of 3D shapes with submillimeter accuracy, motion capture, and capture reflectance properties, aims to capture image samples up to 128 viewing angles and 156 lighting angles simultaneously. It will afford the instantaneous scanning of 3D shape with sub-millimeter accuracy in a range of sizes from a few cm up to several meters and will also afford capture of motion over time. Unlike most other photogrammetry systems, the device can also capture reflectance properties giving rise to accurate appearance. This instrument would contribute to a wide range of interdisciplinary projects and research (both at Stout and at neighboring Ph.D. granting institutions) as well as broader enrichment of the public through partnerships with art and history museums and non-profits. Photogrammetry-based systems acquire information about an object?s shape and appearance via images of the object from multiple angles. With a proper array of cameras the object can be captured in a fraction of a second and no markers or modification of the material of the object is necessary. Moreover, the precision and density of the data is comparable to laser scanning devices. Even more compelling is the similarity of this data to that captured by more complex and custom light stages used in computer graphics light field research. However, a gap still exists between these areas that this instrument, and the research it enables, will endeavor to eliminate. This instrument will support collaboration with photographers at the Minneapolis Institute of Art and with the director of the Goldstein Museum of Design. These museums are open to the public and have a common desire to spread their works into the wider community. This instrument will also contribute to the work of the company Xan Scan that seeks to capture objects of significant historical value (including Native American and ancient Chinese artifacts) from smaller public museums. Xan Scan shares these scans with schools providing broadening the access of students that would otherwise not be able to visit these museums in a very cost effective manner. The instrument will be used in several courses at the institution to enhance education of undergraduate students in design, computer science, and digital humanities. Students will have access to the facility and be better trained for research in these areas. The impact should spread further.
Due to the difficulty of entry into this area, commercial photogrammetry software and hardware has not realized the potential to connect to light field rendering research. The work enabled by this instrument seeks a remedy and provides an open standard for representing, rendering, and sharing this data. Some project examples are discussed, including work with designers to introduce photogrammetry based objects into the design process and museum curators, to scan objects for advanced archeological and historical research, as well as the development of digital exhibits for wider access to their artifacts. Despite the usefulness, photogrammetry has not been embraced by the archival preservation group, possibly because of insufficient understanding of the data and format and storage standards. Hence, archivists and historical personnel will be involved specifically with the goal of addressing these issues and establishing or expanding standards for metadata, photogrammetry images and 3D models.