This project addresses timing attacks in cyber-physical systems, where attackers attempt to compromise the system functionality by changing the timing of computation and communication operations. Timing attacks could be particularly destructive for cyber-physical systems because the correctness of system functionality is affected not only by the data values of operations but also significantly by at what time operations are conducted. The discoveries and methodologies developed in this project will provide fundamental advances in addressing timing attacks, and lead to the design and implementation of more secure cyber-physical systems in a number of key sectors, including automotive and transportation systems, industrial automation, and robotics. In addition to disseminate the research results through publications and workshops, the PIs will collaborate with industry partners on transitioning the research findings into practice. The PIs will also integrate the research into the curriculum at UCR and leverage it for K-12 education through the use of Lego Mindstorm platforms.

The project will build a framework for identifying, analyzing and protecting cyber-physical systems against timing attacks. Building the framework consists of three closely-related research thrusts: 1) Investigate potential timing-based attack surface, and further analyze what types and patterns of timing variations the attacks may cause and how attackers may try to hide the traces of such attacks. 2) Based on the identified attack surface and strategies, analyze how timing changes caused by these attacks may affect the overall system properties, in particular safety, stability and performance. 3) Develop control-based and cyber-security defense strategies against timing attacks. This includes run-time security detectors and mitigation/adaptation strategies across control layer and embedded system layer, as well as design-time mechanisms to provide systems that are resilient to timing attacks. This project will focus on vehicle networks and multi-agent robotic systems as main application domains.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Type
Standard Grant (Standard)
Application #
1839511
Program Officer
Ralph Wachter
Project Start
Project End
Budget Start
2018-02-01
Budget End
2021-09-30
Support Year
Fiscal Year
2018
Total Cost
$659,770
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60611