The broader impact/commercial potential of this I-Corps project will be to improve the health and performance of sports, industrial, or military athletes on a court, in a warehouse, or serving our country, through a wearable liquid metal sensor solution. One of the largest over-use injuries that is prevalent in non-contact injuries, occurs at the foot and ankle, resulting in millions of dollars lost each year through missed time off and rehabilitation costs. Therefore, this wearable solution is designed to assess current movement patterns and function as a pre-rehabilitation device, which provides an assessment to warn wearers and practitioners of potential over-use movement patterns. In addition, the wearable can be used as a training device to ensure proper rehabilitation techniques and "back to work or play" range of motion assessments, ensuring effective decision making about when the wearer can and should return to activity. Based on wearable liquid metal technology, this device can be applied to all other joints in the human body, creating a wide range of uses which broaden our potential customer base beyond sports pre-rehabilitation of the ankle.

This I-Corps project takes the precision of research equipment out of the laboratory and into the environment where training actually occurs. The wearable device designed for this project is comprised of soft liquid metal sensors and a machine-learning computational platform that is both unrestrictive and non-obtrusive around the wearer's feet and ankles. Through pilot testing utilizing the gold standard of an optical motion capture system, specific sensor positions have been identified that provide linear relationships to the angular changes in single and tri-planar movement(s) of the ankle complex. Paired with wireless communication capabilities, the wearable device will allow managers, coaches, and other practitioners of human performance the opportunity to detect asymmetrical leg movement patterns that cause muscular imbalances and often lead to non-contact injuries. Through user experience (UX) testing protocols, software development will enable customizable user interfaces and reports that answers the "voice of the customer", looking for data from the ground up. Based on the results from laboratory testing, the next step is to field test the wearable device and synchronize data visualizations with appropriate mobile devices in order to gain deeper insight on customer wants and needs.

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Agency
National Science Foundation (NSF)
Institute
Division of Computer and Network Systems (CNS)
Type
Standard Grant (Standard)
Application #
1844451
Program Officer
Pamela McCauley
Project Start
Project End
Budget Start
2018-10-01
Budget End
2019-03-31
Support Year
Fiscal Year
2018
Total Cost
$50,000
Indirect Cost
Name
Mississippi State University
Department
Type
DUNS #
City
Mississippi State
State
MS
Country
United States
Zip Code
39762