Glaciers and ice sheets represent the second largest reservoir of water and cover 10% of the earth. They also constitute an important, but poorly understood ecosystem. Improving knowledge of glacier biogeochemistry is particularly important as they are among the environments most sensitive to climate warming. Most notably, glacier melting is accelerating due to rising temperatures, changing precipitation patterns and the deposition of black carbon, which darkens glacier surfaces enhancing their absorption of light and heat. Glacier ecosystems were recently identified as a significant source of ancient, yet highly bioavailable dissolved organic carbon to downstream aquatic ecosystems. This finding runs counter to logical perceptions of age-reactivity relationships, in which the least reactive material withstands degradation the longest and is therefore the oldest. The remnants of ancient peatlands and forests since overrun by glaciers have been invoked as a source of this ancient, labile organic carbon. Preliminary results upon which this study is based, challenge the peatland/forest source hypothesis, indicating instead that glacier organic carbon is predominantly from aerosol deposition and enters glaciers in a pre-aged form. This study will determine the contribution to the glacial organic carbon pool made by fossil fuel derived aerosols, verify whether this organic carbon is indeed ancient and labile, and quantify the extent to which it is being exported to downstream ecosystems.

Today, around 60% of organic aerosols are derived from anthropogenic activities, indicating that organic deposition has also increased dramatically since the industrial revolution. Therefore, if the organics found on, within and being exported from Gulf of Alaska glaciers are from aerosols, the glacier ecosystem structure we observe today is fed by the waste products of industrial activity occurring thousands of miles away. If this is the case, then the organic carbon which is exported to ecosystems downstream of glaciers would also be of anthropogenic origin, suggesting these receiving ecosystems are also transformed relative to their pre-industrial status. As deposition of combustion products is a global phenomenon, all ecosystems may be receiving this ancient, labile carbon subsidy. In warmer ecosystems, the labile carbon windfall is presumably rapidly processed and its signal is lost. In frigid glacier environments, these inputs stand out, making glaciers sentinel ecosystems for the detection and study of anthropogenic deposition. Although the study focuses upon glaciers along the Gulf of Alaska, findings will be relevant to any ecosystem receiving depositional inputs. The project provides a highly interdisciplinary and collaborative research environment from which the undergraduates from under-represented groups in science, a masters student, and a postdoctoral researcher will all benefit. The collaboration extends beyond the funded US scientists to include German colleagues supported by the Max Planck Institute's Marine Geochemistry Group. This international component expands the possibilities for knowledge transfer and provides the US-based researchers access to unique, state-of-the-art analytical facilities. Results will be disseminated to the public through the U.S. Forest Service Mendenhall Glacier Visitor Center in Juneau, providing an opportunity for public outreach on the effects of climate change on glaciers.

Agency
National Science Foundation (NSF)
Institute
Division of Environmental Biology (DEB)
Type
Standard Grant (Standard)
Application #
1146161
Program Officer
Henry L. Gholz
Project Start
Project End
Budget Start
2012-03-01
Budget End
2015-02-28
Support Year
Fiscal Year
2011
Total Cost
$224,037
Indirect Cost
Name
University of Georgia
Department
Type
DUNS #
City
Athens
State
GA
Country
United States
Zip Code
30602