This grant supports the acquisition of a scanning electron spectroscopy for chemical analysis (ESCA) instrument for interface characterization of bio- , geo- and nanomaterials at Rice University. ESCA, also known as x-ray photoemission spectroscopy (XPS), is a powerful and versatile method for evaluating the surfaces of complex materials. The characterization of material interfaces is an important activity in much of materials research; for bio-, geo- and nanomaterials it is essential for developing new materials and understanding their properties. It is intrinsically a surface technique sensitive only to the top several angstroms of a sample, but with the appropriate conditions can be used to probe depths up to 20 nanometers. Several projects require depth profiling of atomic concentrations at surfaces while others need information about the nature of chemical bonding at interfaces. Still others are interested in chemical mapping of interfaces at the tens of micron level. Nearly all participants must be able to measure the atomic composition of surfaces, and the ability to analyze multiple samples quickly and consistently is of particular value. ESCA can measure the relative amounts of carbon and nitrogen at a surface and can determine whether the carbon is graphitic or bound to nitrogen. ESCA works by bombarding surfaces with a controlled X-ray source and resolving the kinetic energy of the photoemitted electrons; these energies are then used to identify surface atoms and their chemical state. Both the relative amounts of atomic species at surfaces, as well as their chemical environment can be deduced from XPS data. Though samples are evaluated under vacuum conditions, the technique is flexible- conductive and non-conductive powders and thin films have been analyzed with this method. The specific system has a focused, intense x-ray source, leading to small spot sizes (10 microns and high x-ray flux. This feature speeds data collection and its large sample platforms allow for rapid analysis of multiple samples. The scanning capability also enables a wider range of surface chemical experiments, such as depth profiles of atomic composition near surfaces and chemical mapping at the tens of micron length scale.

The acquisition of a scanning ESCA will be especially significant to student training and development, specialized courses for undergraduates and graduates, and workshops. Over thirty graduate students, and tens of post-docs and undergraduates will be able to use this system to understand how surface chemistry plays a role in their research. The existence of a scanning ESCA will allow us to implement a set of programs that not only teaches students how to use the instrument, but also highlights the importance of interface chemistry in areas such as bio- and nanoengineering.

Agency
National Science Foundation (NSF)
Institute
Division of Materials Research (DMR)
Type
Standard Grant (Standard)
Application #
0321240
Program Officer
Charles E. Bouldin
Project Start
Project End
Budget Start
2003-08-15
Budget End
2006-07-31
Support Year
Fiscal Year
2003
Total Cost
$450,000
Indirect Cost
Name
Rice University
Department
Type
DUNS #
City
Houston
State
TX
Country
United States
Zip Code
77005