New materials impact not only the physical sciences but also economic growth. At a grassroots level, the solid state and materials chemistry community recognizes the grand challenge of developing rational materials discovery strategies and identifying materials that are transformative in our understanding of physicochemical properties and in technological progress. With support from the Solid State and Materials Chemistry Program in the Division of Materials Research, this project help address this challenge by developing the chemistry of metal chalcogenides. In this context, the research team is building a rational, science-driven foundation to extract maximum scientific and technological benefit. The primary goals of this projecct are to discover and characterize new types of metal chalcogenide compounds, and to understand their structures, chemical bonding and physical properties. If successful, new materials enabling new applications or enhancing the effectiveness of existing technological applications will emerge. The project employs molten salts as powerful reaction media in which to seek formation of new materials with unusual physical properties. The project contributes significantly to the training and teaching of graduate students in the field of solid state and materials chemistry and helps to create a future workforce that understands the importance of new materials as drivers for new phenomena and technologies.
The primary goals of this research are to discover and characterize new types of metal chalcogenide compounds, and to understand their structures, chemical bonding and physical properties. The project employs salt flux syntheses to seek new materials with novel structure and compositions. Well-defined building blocks are present in the flux reactions and their formation is guided by tuning the flux composition and temperature, which controls Lewis basicity and redox potential. An important question in this synthesis program is whether, using intermediate temperatures, one can guide the fundamental reaction chemistry occurring in molten salts to suppress the formation of undesirable compounds and favor crystallization of new ones. The project is based on the general theme of structure-composition-property relationships with the following question being central: How does one develop the tools and concepts, both intellectual and experimental, to discover new functional materials. Focusing on the chalcogenide class the project has the following directions: (a) synthesis in polychalcogenide fluxes focusing on early transition and main group metals, mixed metal systems and also on thio and telluro-arsenate and antimonate chemistry; (b) synthesis using mixed chalcogenide fluxes incorporating oxide salts; (c) creation of novel glasses from the crystalline compounds and their phase change behavior and (d) dissolution studies of selected promising chalcogenide phases to assess their potential for processing into more useful forms. The project is expected to enrich the knowledge of unusual and diverse chalcometallate building blocks and role they play in creating new compounds. Experimental characterization tools to be employed include X-ray crystallography optical, infrared and Raman spectroscopy, scanning and transmission electron microscopy, differential thermal analysis and scanning calorimetry, and measurements of electrical conductivity as well as optical second harmonic generation.