The investigator and his colleague organize an international conference on approximation theory and its applications, emphasizing recent theoretical advances, emerging areas, and developments in areas of applications. The meeting includes plenary lectures in abstract approximation, multivariate splines, nonlinear approximation, radial basis functions, subdivision methods, imaging and signal processing, and wavelets. Parallel sessions of minisymposia in emerging areas and of contributed papers are included.
Roughly speaking, approximation theory is an area of mathematics that seeks effective representations of one sort of mathematical object by a combination of other, simpler sorts of mathematical objects. For instance, a continuous function on an interval can be represented more or less well by a polynomial function that intersects the original function, and perhaps better by breaking up the interval into subintervals and representing the function on each subinterval by a different polynomial. This idea arises in a great many areas of mathematics and has application throughout science and engineering. The investigator and his colleague organize an international conference devoted to approximation theory and its applications, emphasizing recent theoretical advances, emerging areas, and developments in areas of applications. The conference brings together established researchers and students, provides a marketplace for ideas, and helps identify trends and areas of new opportunity in science, engineering, and information technology.