This collaborative project will study the topology of smooth 4-dimensional manifolds, in connection with well-known problems in low-dimensional topology. We will focus on the construction of new smooth manifolds with symplectic structures, including Stein manifolds and symplectic fillings of certain contact 3-manifolds. Recent advances in techniques based on knot surgery and Luttinger surgery for creating exotic manifolds with small Euler characteristic will be coupled with computations of gauge-theoretic and symplectic invariants. We will make use of 4-dimensional handlebody techniques in these constructions, with an organizing principle being the search for 'corks' and 'plugs' as a technique for changing the smooth structure. Techniques of gauge theory and symplectic geometry will be used to investigate the classification of symplectic 4-manifolds and their symmetry groups.
The physical world of space and time is a 4-dimensional space whose local structure is well understood but whose large-scale (or topological) properties remain mysterious. This Focused Research Group will explore the global topology of 4-dimensional spaces, with a goal of understanding what kinds of spaces (called 4-dimensional manifolds) can exist as mathematical objects, and what the properties of such manifolds are. Of particular interest will be the problem of existence and uniqueness of symplectic structures, as well as that of determining the symmetries of a given manifold. The group will investigate how subtle changes in the smooth structure of a manifold can be achieved by gluing together pieces of different manifolds. Such changes will be detected by combining expertise from several disciplines, including powerful techniques derived from gauge theories of mathematical physics.