A remarkable aspect of algebraic number theory lies in the connections it finds between objects that appear to be of entirely different natures. The overarching principle of the research of the PI is that certain algebraic problems can be reinterpreted directly as geometric problems in higher dimension, providing fascinating connections between objects from different parts of mathematics. A great wealth of such connections have been found indirectly through intermediate objects of an analytic nature. The research outlined in the proposal aims to provide a window through which well-known conjectures and statements of arithmetic may be seen in a new and more direct light.

The PI has conjectured an intricate but explicit relationship between modular symbols and the arithmetic of cyclotomic fields that may be viewed as refining the Iwasawa main conjecture. Roughly speaking, this conjecture identifies class groups of cyclotomic fields with quotients of homology groups of modular curves by actions of Eisenstein ideals. The central project of the award is the extension of this conjecture to higher dimensions and other global fields. The expectation is that the geometry of locally symmetric spaces should explicitly determine the arithmetic of lattices in Galois representations, which is to say the structure of Selmer groups.

Agency
National Science Foundation (NSF)
Institute
Division of Mathematical Sciences (DMS)
Type
Standard Grant (Standard)
Application #
1661658
Program Officer
James Matthew Douglass
Project Start
Project End
Budget Start
2016-08-15
Budget End
2018-12-31
Support Year
Fiscal Year
2016
Total Cost
$22,991
Indirect Cost
Name
University of California Los Angeles
Department
Type
DUNS #
City
Los Angeles
State
CA
Country
United States
Zip Code
90095