This project, to be conducted by James Madison University, Georgetown University, and Northwestern University, will examine learning spatial thinking skills by high school students (who are studying geoscience), looking at educational outcomes as well as behavioral and neurological measures. There is already considerable evidence linking spatial ability and future STEM (science, technology, engineering, and mathematics) attainment. The project will focus on a high school course, the Geospatial Semester, that is designed to improve spatial thinking. The project will look for changes in patterns of brain activity as a result of the course, as well as relations among the educational, behavioral, and neurological measures. Prior research indicates that spatial training in the laboratory may reduce gender differences in performance; this project will seek to measure this effect in real world high school spatial learning, and to identify neural mechanisms that help explain how and why the gender gap closes. This project will advance the work of the EHR (Education & Human Resources) Directorate in studying the cognitive and neural basis of STEM learning.

The overall goal of the project is to develop a mechanistic theory of change for spatial STEM education at the behavioral and neural levels. To achieve this goal, the project will measure a combination of outcomes: educational (e.g., coursework), behavioral (e.g., core spatial ability on standard tests of mental rotation and embedded figure identification, use of spatial language), and neurological (e.g., neural efficiency and grey matter volume in brain regions that support spatial thinking ability, interconnectivity networks across brain regions). Students in the spatially-based Geospatial Semester will be compared to peers receiving standard (non-spatially-based) STEM education in other advanced science courses. Neurological measures will be obtained by functional and structural magnetic resonance imaging performed at pre- and post-test time points. In general, the project will address the issue of brain plasticity in a high school STEM education context. The project will use machine learning techniques to discern neurological effects of spatial learning in both hypothesis-driven and data-driven ways, and examine gender differences in the effect of spatial STEM learning on cognition and the brain. Analyses will focus on relating changes across neural, behavioral, and educational levels toward an integrated understanding of the mechanisms that make spatial STEM learning effective.

Project Start
Project End
Budget Start
2015-01-01
Budget End
2018-12-31
Support Year
Fiscal Year
2014
Total Cost
$427,606
Indirect Cost
Name
Northwestern University at Chicago
Department
Type
DUNS #
City
Chicago
State
IL
Country
United States
Zip Code
60611