Physics (13) Recent developments in quantum optics and quantum information physics along with the associated progress in photon-counting instrumentation have opened the opportunity of introducing the most difficult concepts in quantum mechanics to a much broader audience than previously. Undergraduates from a variety of majors and even the general public are fascinated by news of quantum computing and "quantum weirdness." These sophisticated concepts can be clearly and dramatically demonstrated by means of a series of experiments.
This project is built on a previous smaller project. Four teaching experiments on photon quantum mechanics were developed and taught as a laboratory course (see course website www.optics.rochester.edu/workgroups/lukishova/QuantumOpticsLab). They are adapted to the main challenge (the lack of space in the curriculum) by developing a series of modular experiments and demonstrations based on an elective laboratory that can be incorporated into a number of courses ranging from freshman to senior level, in both physics and engineering.
The goal of this project is to develop and test various versions of teaching experiments and supporting materials to facilitate understanding of the concepts of superposition, interference, complementarity and non-locality in quantum mechanics by students with diverse backgrounds. A further goal is to acquaint the students with these concepts using the recently developed instrumentation of quantum information technology that can be used in other areas (e.g., in nanotechnology or biomedicine). A collaboration among a diverse group of schools (universities, community and liberal arts colleges, and a technical institute) is developing a combination of lecture courses on modern physics, quantum mechanics, and nanotechnology with experimental demonstration and hand-on experiments for undergraduates at all levels, including first year students. New compact equipment (e.g., a single photon source coupled with optical fibers) is being developed for sharing among institutions in a quantum optics teaching network.
Intellectual merit: The project addresses one of the most challenging concepts of modern physics in science and engineering education that is now being applied to important technological problems. Enormously powerful computers and total communication security are the future goals of quantum information technology. It is important to familiarize the future workforce with these new ideas as well as to provide them with hands-on experience in photon-counting instrumentation widely used in many technological areas.
Broader impact: The project directly impacts a variety of science and engineering students with diverse backgrounds including under-represented groups. Dissemination of the results is by a constant development of a project website, building a national network with collaborative activities with similar course instructors from other universities, presentations and publications in educational journals, and by student publication and presentations at regional and national professional meetings. NSF Summer REU and RET programs and interactive workshops provide students and teachers from other institutions with an opportunity to learn about teaching experiments, and compact equipment may be borrowed from Rochester. A book on quantum optical teaching experiments is being prepared for publication.