Hydrology and water resources engineering is an important subject area for undergraduate engineering students who pursue careers related to water management and water infrastructure, such as flood forecasting and flood protection. By developing a web-based platform (HydroLearn) to facilitate collaboration and sharing of online active-learning teaching resources, this project will change the way in which learning resources are developed and adopted. Using modern web technologies, HydroLearn will provide national and global access to materials that will enable faculty to collaboratively develop learning content in the area of water resources. HydroLearn will be a collaboration with the National Water Center and will use their National Water Model to provide students and faculty with innovative learning opportunities that address water problems with immediate community impacts. To disseminate the results at a national scale, investigators will collaborate with the Consortium of Universities for the Advancement of Hydrologic Science, Inc., which represents more than 100 U.S. universities and organizations. Further, during this project, fellowships for faculty and early-career scientists will be provided to support the development and testing of the learning resources via engagement with the water resources engineering community.

More specifically, this project has two main objectives: (1) to support hydrology and water resources engineering faculty to develop, share, and adopt active-learning innovations; and (2) to support effective student learning in key areas of hydrology and water resources engineering, focusing on flood analysis, modeling, forecasting and protection. Using an interactive process of development and propagation, the web-based platform (HydroLearn) that will be developed will showcase the following capabilities: (a) interoperability and integration with community hydrologic data and modeling resources; (b) flexibility in faculty users being able to create their own content modules; (c) creating material ownership via crowdsourcing of learning content using an open source approach to develop a sense of community; and (d) ease in teaching material adoption and customization. The project will contribute to closing the gap between development of innovations and actual adoption by following a design model that engages potential adopters at early stages and throughout the entire project using an active dissemination approach with direct feedback on adopters' needs to facilitate future utility and adoption.

Agency
National Science Foundation (NSF)
Institute
Division of Undergraduate Education (DUE)
Type
Standard Grant (Standard)
Application #
1726965
Program Officer
Abby Ilumoka
Project Start
Project End
Budget Start
2017-09-01
Budget End
2021-08-31
Support Year
Fiscal Year
2017
Total Cost
$805,203
Indirect Cost
Name
University of Louisiana at Lafayette
Department
Type
DUNS #
City
Lafayette
State
LA
Country
United States
Zip Code
70503