The flux of C from coastal marine sediments is likely to be influenced by submarine ground water discharge (SGD), which may enhance remineralization of buried C and transport it to the water column. Previous studies reveal that SGD includes both meteoric water from continental aquifers and surface water mixed into shallow sediment through processes such as wave and tidal pumping, density driven flow, and bioirrigation. Surface water is saturated with oxygen, and thus should remineralize organic carbon that otherwise would be sequestered in the sediments. The process of mixing and enhanced remineralization will be studied in the Indian River Lagoon System (eastern Florida), where changes in water column salinity and pore waters have been used previously, and will be used in this study, to trace pumping of oxygenated surface water into the sediments. The study will use time-series measurements and monitoring of conservative tracers (conductivity, Cl- concentration, 222Rn activity, and temperature) to determine the temporal and spatial scales of mixing, as well as variations through time and space of discharge from the regional aquifers. Combining Cl- and conductivity allows greater temporal and spatial resolution than either one alone. Simultaneous measurements of Cl- concentration, conductivity, and 222Rn activity provide unique information because of their distinct compositions in end-member water sources. The hydrologic studies will be coupled with studies of remineralization of C in the sediments using C concentrations and 13C and 14C as tracers of the sources of C. Carbon in the mixed zone will be depleted in 14C because detrital organic carbon will be up to several thousand years old depending on depth of burial. Carbon in the meteoric water will be even more depleted in 14C depending on the flow paths and rates. The d13C values will be controlled by the source of C from carbonate or organic matter and provides a powerful complement to the 14C measurements. Results of the study should provide information on the efficiencies of C transformation, spatial and temporal variations of hydrologic controls on those transformations and fluxes in coastal sediments, and information on C cycling in marine sediments from hydrologic processes, an important first step toward quantitative estimates of sources to the global C cycle. The study will also develop new isotopic tracing techniques to study these processes. The study has important management implications for the local study site, which is in the National Estuaries Program, is one of the most biologically diverse estuaries in the nation, and home to 21 endangered or threatened species. The project impacts the educational missions of the University of Florida (a Research I institution), Florida A&M University (a Historically Black and Minority Serving College/University), and Louisiana State University (located in an EPSCoR state) through involvement of high school to graduate students, both through course work that will be linked to the Florida Center for Ocean Science Education Excellence (FCOSEE) web portal, and directly in the project, which offers a broad range of learning opportunities (hydrology and biogeochemistry).

Agency
National Science Foundation (NSF)
Institute
Division of Earth Sciences (EAR)
Type
Standard Grant (Standard)
Application #
0403515
Program Officer
Enriqueta Barrera
Project Start
Project End
Budget Start
2004-08-01
Budget End
2008-07-31
Support Year
Fiscal Year
2004
Total Cost
$213,546
Indirect Cost
Name
Louisiana State University & Agricultural and Mechanical College
Department
Type
DUNS #
City
Baton Rouge
State
LA
Country
United States
Zip Code
70803