Cosmogenic Beryllium-10 (10Be) in quartz is widely used to quantify rates of erosion and weathering in landscapes. 10Be is useful in the study of surface processes because it is produced only near the ground surface, and thus provides a measure of the residence time of mineral grains in soils. These residence times can be readily interpreted in terms of erosion rates averaged over hundreds to thousands of years, making them nearly ideal in studies of landscape evolution and soil sustainability. There are problems with the use of quartz, however. It is not present in all landscapes and its chemical preparation requires the use of hazardous hydrofluoric acid, limiting the number of laboratories that are able to process samples. This project will develop 10Be in magnetite as a new tool for determining catchment-averaged rates of erosion and weathering. For most purposes, erosion rates from magnetite would be just as useful as erosion rates from quartz. Magnetite, however, is easier to separate from other minerals and its chemical preparation is far less hazardous and expensive. The project's contributions will include development of rapid, cost-effective mineral separation and chemical preparation techniques. This should open the use of 10Be to a whole new community of researchers. The project will test the method in three landscapes where erosion and weathering rates have been intensively studied. In addition, it will explore the coupled use of 10Be in magnetite and quartz as a new, readily measured index of the catchment-averaged degree of chemical weathering.

Not long ago, it was extremely difficult to measure long-term rates of erosion and weathering, in part because the timescales of human observation are usually short compared to the timescales of landscape erosion. Over the last 20 or so years, cosmogenic nuclides such as 10Be in quartz have provided new tools for measuring rates of erosion and weathering averaged over hundreds to thousands of years. This has fueled a revolution in quantitative understanding of surface processes. Yet measurements of erosion rates in some landscapes have remained difficult because the preferred cosmogenic target mineral, quartz, is not present in all rock types. Hence cosmogenic-based erosion rates have rarely been measured in volcanic landscapes, for example. Moreover, all of the work on cosmogenic nuclides is done in just a few dozen labs around the world because quartz is not easy to prepare for analysis of 10Be, and costly, specialized equipment is needed to handle the large volumes of hazardous acids that are involved. Usage of the mineral magnetite has the potential to overcome these difficulties. 10Be is produced within it in much the same way as it is in quartz. It is present as a trace mineral in many rocks where quartz is absent. Moreover, magnetite is easier to separate and dissolve than quartz. Hence, techniques developed in this project promise to open the use of 10Be to new landscapes where quartz is absent, and also to new researchers who lack resources for the specialized equipment of quartz separation and dissolution. Magnetite and quartz weather at different rates. This raises the exciting possibility that 10Be in the mineral pair magnetite and quartz from the same stream will yield an index of chemical weathering in soil. This research will focus on fieldwork at two of NSF's Critical Zone Observatories (Luquillo and Southern Sierra), thus capitalizing on existing infrastructure investment for studying weathering processes and their relationships with geology, climate, and ecology.

Agency
National Science Foundation (NSF)
Institute
Division of Earth Sciences (EAR)
Application #
1148105
Program Officer
Richard Yuretich
Project Start
Project End
Budget Start
2012-06-15
Budget End
2016-05-31
Support Year
Fiscal Year
2011
Total Cost
$289,440
Indirect Cost
Name
Purdue University
Department
Type
DUNS #
City
West Lafayette
State
IN
Country
United States
Zip Code
47907