The objective of this research is to contribute to the interdisciplinary topic on STEM and basic medical science, specifically Patient-Centered Health Informatics Applications, with the newly proposed techniques that stand to benefit from the investigator?s expertise in engineering and from the collaboration with medical experts.
The approach is to study the medical data from several institutions comprehensively with the dynamics of all the datasets in their entirety such as non-linearity with kernel factors, and the network characteristics of whole multiple database distribution, rather than applying traditional techniques of prediction and classification to the very limited number of small medical testbeds.
Intellectual Merit
When the proposed adaptive tracking method is used on soft tissue tumors, radiosurgery systems maintain precise targeting of the tumor by predicting tumor motion using a motion tracking system. The successful development of the proposed dynamic classification method will substantially advance the clinical implementation of cancer screening, promote the early diagnosis of colon cancer, lead to an improved screening rate, and ultimately contribute toward reducing the mortality due to colon cancer.
Broader impacts
The proposed data-intensive solutions can save millions of cancer patients every year. The expected outcomes will be applied to medical problems and benefit society as a whole by enhancing the quality of all our lives, through unprecedented advances in the early diagnosis and treatment of cancer. The advancements in the developed framework will make use of and expand the Nation's cyber infrastructure and high performance computing capability.