The objective of this research is to support non-destructive, non-hazardous and non-invasive imaging applications in engineering, medical, and biological sciences. The approach is based on pulsed terahertz spectroscopy and imaging that has a spectral range from 0.06 to 3 terahertz with high resolution up to 80 Ãm. The intellectual merit of this project lies in its contribution to our understanding and utilization of terahertz radiation and imaging techniques in a wide variety of applications. These include investigating breast tumor margins of excised tissue to help reduce cancer recurrence; guiding the fabrication of nano-acoustic imaging materials and devices; studying water content and fungal presence in ecological research, and understanding and monitoring thermal ablation for cancer therapy. The advantage of terahertz light over visible light is that scattering is less allowing imaging deep into an object. The availability of the terahertz instrument has significant broader impact through providing access to unique education, research and training opportunities for graduate and undergraduate students and postdoctoral researchers. Underrepresented students will be engaged in training opportunities through diversity initiatives at the University of Arkansas. Terahertz technology provides non-destructive and rapid characterization of coating materials that will impact automobile, aircraft, food, pharmaceutical, semiconductor, and solar photovoltaic energy industry. The capability of terahertz medical imaging will advance oral healthcare and skin and breast cancer detection and treatment. Terahertz technology provides safe imaging and screening that will advance the identification of hidden explosives and personnel screening at airports and mail screening for bio-threats, which will impact national security.