Diabetes is a metabolic disorder and major world health problem. As stated by the International Diabetes Federation, there are over 350 million diabetics worldwide causing over 3.2 million deaths annually. Consequently, glucose detection is of paramount importance in the diagnosis and treatment of diabetes. This project will illustrate how nanotechnology, biomaterials, and biosensing technologies can be meshed together for injectable, biocompatible, bioresorbable nanosensor array for continuous glucose monitoring. The work will advance in vitro and/or in vivo monitoring technology for continuous glucose monitoring in general and, if successful, will not only have an enormous impact on public health, but also provide a demonstration from basic science to applications. This project will impact education of the graduate, undergraduate and high school students by integrating advanced biosensing into their educational and laboratory training, and actively interact with the general public and industry companies through various outreach activities within and outside of the University of Connecticut and Northeastern University. Moreover, a new course of Bioanalytical Sensor will be offered to students.

This multidisciplinary proposal aims to develop an injectable biocompatible and programmed-bioresorbable surface-enhanced Raman scattering sensor for long-term, subcutaneous, continuous glucose monitoring. A number of novel features crossing bio-, nano-, material- and sensing technologies will be seamlessly meshed into this novel glucose sensing system. A sandwich-like glucose sensing material, including programmed-bioresorbable glucose-responsive nanosensor array covered by biocompatible and biodegradable hydrogel with entrapped anti-inflammatory drug, will be fabricated. Then a sterilized indwelling needle will be used to deliver the as-prepared sensor subcutaneously for long-term, continuous glucose sensing. The sensing performance will be systematically investigated. The synergistic effects of (1) good biocompatibility and biodegradability of hydrogel, together with (2) good biocompatibility and stability of nanosensor array, (3) programmable bioresorbability of sensing materials after long-term use, (4) specific and reversible binding of glucose with sensing material and its unique and strong glucose-responsive optical signals distinguishable from those of skin tissue and hydrogel, (5) non-invasive monitoring through Raman scattering, (6) anti-inflammatory effect provided by anti-inflammatory drug entrapped in hydrogel, and (7) minimally invasive delivery of sensor through convenient skin piercing, will accomplish the goal of reliable long-term continuous glucose monitoring.

Project Start
Project End
Budget Start
2015-07-15
Budget End
2019-12-31
Support Year
Fiscal Year
2015
Total Cost
$344,335
Indirect Cost
Name
University of Connecticut
Department
Type
DUNS #
City
Storrs
State
CT
Country
United States
Zip Code
06269