This Major Research Instrumentation (MRI) funding will support the acquisition of an inductively coupled plasma reactive-ion etching (ICP-RIE) system to enable fundamental research and education in nanophotonics, nanoelectronics and nano-bio devices. The objective of this MRI acquisition is to facilitate new and existing multidisciplinary research in science and engineering, enable educational curriculum development, and promote outreach activities at Rochester Institute of Technology (RIT). The ICP-RIE system will enable photonic, electronic and bio device fabrication capability that does not exist presently at RIT and Rochester region.

The requested ICP-RIE system will provide dry etching capability for various material systems such as compound semiconductors, dielectric materials, and metals with fast etching rate, well-controlled selectivity, and promising uniformity. The instrument is essential to enable fundamental research and education on III-Nitride based light emitting diodes (LEDs) and lasers, seamless integration of robust and low-powered III-V quantum dot (QD) lasers with silicon photonics, III-V tunneling field effect transistor, memory devices for computing, QD and nanowire photovoltaics, III-Nitride photodetectors for inertial confinement fusion research, nanoplasmonic devices, and nan-bio devices for efficient biomolecule transfer. The requested instrument will be the first ICP dry etcher tool at RIT, which will be shared by research groups across all disciplines in science and engineering with students trained from Microsystems Engineering Ph.D. program and Ph.D. in Engineering program. The tool will also be shared by external research groups in Rochester region to enhance research and collaborations between RIT and other colleges, national labs, and small businesses in the region.

The ICP-RIE system will be designated as a shared user facility, available to new curriculum and lab section development on device fabrications for both undergraduate and graduate students at RIT, whom can be trained for next-generation scientists and engineers. The fabrication capability provided by the proposed instrument would benefit curriculum development at RIT for several fundamental courses and lab sections focused on nanofabrication and semiconductor devices. Demonstration experiments on photonic and electronic devices can also be designed to K-12 students and teachers through RIT outreach activities by the use of the dry etcher, which can stimulate K-12 students' interest to pursue science, technology, engineering, and mathematics (STEM) disciplines in the future. Connectivity with such demonstration experiments will also be promoted to train existing women and underrepresented minority students at RIT.

Project Start
Project End
Budget Start
Budget End
Support Year
Fiscal Year
Total Cost
Indirect Cost
Rochester Institute of Tech
United States
Zip Code