Confining light to region of hundreds or even tens of micrometers in high-quality optical microresonators, one can achieve a significant concentration of electromagnetic energy. The confined light becomes much more sensitive to environmental changes, exerts an amplified mechanical force, and can generate significant nonlinear effects even at small light intensities. For this reason, optical microresonators are being actively studied in the context of optical cooling or amplification of mechanical motion, for precision metrology, lasing, ultrasensitive biosensing and other areas. Confinement of light is usually achieved using solid materials, but this project proposes to achieve it using liquid microstructures. The transition to liquid droplet creates significant challenges, but also opens up new opportunities. Firstly, mechanical softness of droplets makes them more receptive than solid materials to the light-induced forces resulting in many orders of magnitude larger mechanical responses and hence increased efficiency of optical cooling or heating. Secondly, liquid droplets allow access to the resonator's interior regions. Because electromagnetic field is orders of magnitude larger inside than outside of the resonator, one can expect the corresponding increase in sensitivity of biosensors based on droplet resonators by several orders of magnitude. Thirdly, use of liquid droplets allows realizing a novel class of photonic molecules with extra strong optical bonds based on droplet-in-droplet structures, in which one or more smaller droplets are encapsulated in a larger droplet. Overall, the objective of this project is to demonstrate the transformative potential of liquid droplet resonators in the fields of optical cooling, lasing, sensing and metrology. The interdisciplinary nature of the project, which includes physicists, and electrical and mechanical engineers, will ensure that graduate and undergraduate students will be exposed to the culture and methodology of different disciplines. In addition, the project will build connections between American and Israeli researchers and students and strengthen the collaboration between American universities participating in the project and Technion, Israel's premiere engineering school. The support for this project is provided within the collaborative NSF-BSF (Binational US-IL Science Foundation) program with participation of the Israel team financed by BSF.

This project merges the fields of microfluidics and optical whispering-gallery- mode resonators by proposing the study of the optical and optomechanical properties of novel photonic structures composed of fluid droplets. The mechanical softness of liquid droplets combined with their versatility and tunability will allow the principal investigators to study novel optical and optomechanical effects such as optical cooling of capillary waves, topological energy transfer in the vicinity of exceptional points, and others. The international multidisciplinary team formed for this project will exploit state-of-the-art microfluidic technologies to fabricate different structures of droplets, with each droplet serving as a high-quality photonic resonator. Numerical simulation and theoretical models will be developed to understand the physics associated with the novel structures developed in the project. Experimentalists working on the project will carry out optical characterization of the proposed structures and develop in-depth understanding of their novel optical and optomechanical effects. This research will advance the field of optofluidics by applying state-of-the-art 3D printing technologies to the fabrication of novel microfluidic devices and generation of complex structures of microdroplets. Study of novel photonic structures with unique properties will also open new directions in the field of optical whispering-gallery-mode resonators. The general field of computational electrodynamics will also benefit from this work by taking the T-matrix formalism well outside its nominal domain and applying it to the modes of optically coupled complex structures of liquid droplets.

Project Start
Project End
Budget Start
2017-08-01
Budget End
2020-07-31
Support Year
Fiscal Year
2017
Total Cost
$114,025
Indirect Cost
Name
Washington University
Department
Type
DUNS #
City
Saint Louis
State
MO
Country
United States
Zip Code
63130