The vision of the ERC is to create new fluid power technology that is compact and efficient. This will cause a radical transformation of fluid power, signigicantly reducing energy consumption and soawning whole new industries. New control approaches and system configurations will be developed to replace current, inefficient valve throttling approaches. These include high performance pump control, regeneration, on-off valve PWM control and biomimetic distributed pumping and control. A new generation of pump motors and actuators with improved efficiency, enabled by actively controlled tribological surfaces, will be developed. Biologically inspired coatings will reduce drag. Phase-change energy storage will create more compact energy storage and soures. Chemofluidie actuation and free-piston engine compressors will provide order-of-magnitude better energy and power density for self-powered and mobile devices, enabling a host of new applications. Use of composite and functionally graded materials and integrating components into unfied systems will minimize the weight and volume of fluid power systems. Problems with noise, vibration, leakage, contamination and awkward interfaces will be addressed, leading to wider, more efficient and more satisfactory use of fluid power. The result will be an expansion of fluid power use, currently limited to heavy equipment, to portable and self-powered devices such as high-power wearable tools and rescue robots. Whole new industries will be created where compact and efficient fluid power can be used for underwater exploration, for rescue operations, for remotely manipulating nuclear materials, for bomb disposal, for medical and rehabilitation applications and for wearable or compact tools for home and industrial use. Improved compactness will enable fluid power to perform tasks that are not presently possible. Improved efficiently will significantly reduce petroleum consumption and pollution. For each one percent improvement in overall fuel comsumption for transportation, $2.4 billion of crude oil is saved each year. The superior power density of fluid power makes it ideal for regenerative braking with field tests showing fuel savings of 25 to 35% for trucks. The ERC will develop new, high density accumulators making the regeneration approach feasible for passenger vehicles, resulting in much larger energy savings. Significant energy savings can also be achieved in the construction, mining, agricultural and industrial sectors. Education and outreach innovations of the ERC include (1) the development of benchmark fluid power labs augmented with take-home laboratory ,odules (2) collaboration with the Science Museum of Minnesota to develop permanent and traveling exhibits, educational materials on fluid power and an extracurricular fluid power program for middle schools and high schools, (3) collaboration with Project Lead the Way to include fluid power in a high school technology curriculum, (4) the creation of industrial internship and co-op programs for both undergraduate and graduate students, and (5) the enhancement of continuing education in fluid power for industry through hands-on short courses and distance education.

Agency
National Science Foundation (NSF)
Institute
Division of Engineering Education and Centers (EEC)
Type
Cooperative Agreement (Coop)
Application #
0540834
Program Officer
Bruce M. Kramer
Project Start
Project End
Budget Start
2006-06-01
Budget End
2014-05-31
Support Year
Fiscal Year
2005
Total Cost
$29,969,448
Indirect Cost
Name
University of Minnesota Twin Cities
Department
Type
DUNS #
City
Minneapolis
State
MN
Country
United States
Zip Code
55455