This award creates a new RET Site: Providing Research Experiences and Practicum on Cyber-Physical Systems for Regional Community College Faculty (PREP-CPS) at the University of Tennessee Chattanooga (UTC). Each summer, ten community college faculty teaching in Science/Technology/Engineering/Mathematics (STEM) fields will participate in research activities with engineering faculty at the University of Tennessee Chattanooga. The community college faculty will be recruited from 5 feeder colleges in the greater Chattanooga region. Participants at the site will receive basic training in cyber-physical systems, along with specific knowledge on how to use these tools to address the pressing problems and needs of the future. A key enabler for future technology developments, cyber-physical systems is an interdisciplinary research area that engages a broad spectrum of disciplines and could bring about revolutionary changes in domains such as energy, environment, and healthcare. This technology has the potential to transform our everyday lives (e.g., smartphones, activity trackers), our communities (e.g., self-driving cars, smart cities), and even our future (e.g., clean energy, space exploration). The participating community college faculty will translate their experience and knowledge by developing instructional modules and course materials that leverage cutting-edge technology and better prepare students for in-demand research and career fields. These activities all contribute to the strengthening of the multi-institutional consortia of the UTC and its feeder colleges in order to promote curricular alignment for a seamless engineering transfer pathway that can be replicated across the state and nation.

The RET site will provide participants with much-needed discovery and lab-based research experiences involving cutting-edge technology in cyber-physical systems. Participants will conduct research on cyber-physical systems applied to engineering challenges for smart and sustainable urban infrastructure and industries. These efforts will lead to new knowledge, technology, and process optimization in algal biofuels and biohydrogen production, geothermal systems, solar energy harvesting, and rocket propulsion systems. Objectives include: (1) Increase participants? research skills and practical knowledge of CPS; (2) Increase participants? self-efficacy in creating and implementing laboratory-based experiments using cutting-edge technology with students in the classroom; (3) Help bridge the preparedness gap between what is exhibited by community college transfer students and what is expected by university engineering faculty. Coached by a STEM Education faculty member, participants will develop lesson plans for two types of modules: lab-in-a-box modules, in which students conduct inexpensive high-tech laboratory experiments on site, and remote modules, in which students conduct laboratory experiments remotely with state-of-the-art technology at the University of Tennessee Chattanooga. The modules developed through this Site will incorporate threshold concepts that will help ensure community college students in the greater Chattanooga region transfer smoothly to the University of Tennessee Chattanooga and other four-year institutions.

This award is being co-funded by the Directorate for Education and Human Resources (EHR), Advanced Technological Education (ATE) Program and the Directorate for Engineering (ENG), Division of Engineering Education and Centers (EEC).

This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.

Project Start
Project End
Budget Start
2020-09-01
Budget End
2023-08-31
Support Year
Fiscal Year
2019
Total Cost
$591,489
Indirect Cost
Name
University of Tennessee Chattanooga
Department
Type
DUNS #
City
Chattanooga
State
TN
Country
United States
Zip Code
37403