The increased diversity of living organisms from the poles to the tropics is one of the most pronounced features of life on Earth. But it still lacks an explanation. One universal feature of this relationship, as seen across the land, oceans, lakes and rivers, is that hotter environments have more organisms of all kinds: animals, plants, and microbes. In this study, a big picture, or macroecological, approach will be used to study the effect of temperature on biodiversity. It will generate mathematical models for how temperature, through its effect on chemical and biological processes, affects ecological interactions and patterns of biodiversity. The models will be tested on three kinds of organisms that play key roles in forests: trees that produce leaves, small animals that eat decaying leaves and other material from plants, and microbes that consume whatever remains. Standardized field surveys along a gradient of increasing temperature from a high-elevation conifer forest in Colorado to a tropical rainforest in Panama will be combined with controlled experiments in the field and laboratory to document changes in genetic diversity, functional diversity and ecological processes.

The proposed research will predict impacts of global climate change on biodiversity and ecological processes, topics of major concern to policymakers and society. The project will also train a new generation of undergraduates, doctoral students, and postdoctoral scientists in the new multi-disciplinary, multi-investigator, collaborative research needed to address the challenging environmental problems that societies face.

Agency
National Science Foundation (NSF)
Institute
Emerging Frontiers (EF)
Application #
1065861
Program Officer
timothy kratz
Project Start
Project End
Budget Start
2011-08-01
Budget End
2015-07-31
Support Year
Fiscal Year
2010
Total Cost
$731,057
Indirect Cost
Name
University of Arizona
Department
Type
DUNS #
City
Tucson
State
AZ
Country
United States
Zip Code
85719