On a dollar per mass basis, active pharmaceutical ingredients (APIs) are perhaps the most valuable chemicals in the world, and yet much of the mass of APIs in drugs taken is not absorbed in the body, entering the water supply and potentially harming human health and the environment. At the same time, despite rapid advances in the science of personalized medicine, and digital, additive manufacturing, the trillion-dollar-per-year pharmaceutical industry retains its century-old manufacturing processes and uses supply chain and distribution models that are potentially prone to tampering, contamination, and disruption. To address this problem, researchers and drug manufacturers have begun developing 3D printing approaches, as well as techniques borrowed from other industries (e.g. thin-film coatings) for drug formulation, dose customization, and release profile engineering. However, fundamental challenges remain with material compatibilities, ingredient dispersion in solvents or matrix materials, process control, and scalability. This fundamental research project aims to address these challenges by converging several new breakthroughs in additive manufacturing, molecular and crystallization modeling, surface science and engineering, and patient-specific in vitro disease models. This project will train students of diverse backgrounds, including women and minorities, and those concerned with patient care and safety, public health, drug costs, regulatory law and practices.
This fundamental research project will introduce a radically new approach to drug formulation and distributed manufacturing, offering new means of controlling crystalline structure, cocrystallization, and adaptation to different delivery vehicles. Currently, predictive model-based process design for organic crystallization processes is still in relative infancy. Likewise, processes for cocrystallization require further work to systematize coformer selection and prediction of conditions for cocrystal formation. The novel, solvent-free process used here offers possibilities for developing novel pharmaceutical cocrystallization research tools, as well as a path to scalable cocrystal manufacturing. The technology platform of controlled surface wettability patterns to enable low-cost dissolution assays, combined with the organoid assays will create new paradigms for on-site validation and control of product quality, which will be particularly beneficial in a distributed manufacturing setting. The organoid assays used could enable rapid testing of new medications in more realistic cellular microenvironments prior to human trials. This research will facilitate the path to accelerating the time from drug development to manufacturing and distribution, and help prevent potentially dangerous by-products or contaminants from reaching patients.
This award reflects NSF's statutory mission and has been deemed worthy of support through evaluation using the Foundation's intellectual merit and broader impacts review criteria.