This Small Business Innovation Research (SBIR) Phase II project will develop germanium-containing ferroelectric liquid crystals (Ge-FLC's), a fundamentally new class of LC materials that enable migration of microdisplays into camera and automotive applications with billion-dollar available display markets. Ge-FLC mesogens synthesized during Phase I demonstrated breakthrough layer shrinkage properties that will solve the longstanding bistability problem in FLC's, thereby raising the achievable brightness of FLC-based projection displays to commercially viable levels. Phase II research tasks include: (1) the synthesis and characterization of a library of approximately 100 new Ge-FLC compounds, (2) the formulation from this library of FLC mixtures engineered for three specific approaches to bistable switching, and (3) development of alignment layers conforming to the device physics requirements of the three bistable approaches. These tasks support the overall project objective of demonstrating robust engineering-prototype bistable FLC devices with characteristics appropriate for commercial microdisplay products.
Commercially, the project furthers the emerging technology of silicon-based microdisplays with very large potential commercial impact. The company's previous success commercializing SBIR-funded technology into a rapidly-growing $40-million business provides a foundation for growth into billion-dollar markets for camera and automotive microdisplays enabled by the Phase II innovation. Success in these markets will generate outstanding returns for the company's shareholders, and will provide higher-performing, lower-cost electronic cameras and safer and more convenient automobiles to U.S. consumers.