This award is funded under the American Recovery and Reinvestment Act of 2009 (Public Law 111-5).

This Small Business Technology Transfer (STTR) Phase I project addresses unmet analysis needs of froth flotation, a separations process widely used in the mining industry to separate worthless gangue from desired mineral particles. The goal of this Phase I is the preparation of sensors that permit the measurement of collector chemicals used in flotation suspensions. Our proposed sensors are expected to be ideally suited for these measurements since they are not affected by turbidity, have a collector selectivity that can be tuned with specific receptors, and require no off-stream sample handling. The project will take advantage of the highly selective and fouling-resistant fluorous perfluoropolymer membranes introduced by the academic partner Phil Buhlmann.

The broader impacts of this research are significant as it will enable the mining industry to be more sustainable in its approach to mineral recovery. Specifically, our research aims to significantly reduce the amount of toxic chemical waste associated with froth flotation and its inevitable environmental impact. The method has the potential of making the US copper industry more competitive by saving over $200 M in wasted collector while simultaneously improving mining sustainability by eliminating an estimated 891,000 kg of unnecessary chemical discharges. In addition to these benefits, the multidisciplinary aspects of this project will train students in synthetic and analytical techniques, involving concepts from chemistry, materials science, and engineering. A graduate student will have the opportunity to mentor an undergraduate students involved in this project through directed research studies and through the NSF-REU programs at the UMN.

Project Report

This Small Business Technology Transfer (STTR) Phase I project addresses unmet analysis needs of froth flotation, a separations process widely used in the mining industry to separate worthless gangue from desired mineral particles. The goal of this Phase I is the preparation of sensor membranes that permit the measurement of collector chemicals used in flotation suspensions. Our proposed sensors are expected to be ideally suited for these measurements since they are not affected by turbidity, have a collector selectivity that can be tuned with specific receptors, and require no off-stream sample handling. The project will take advantage of the highly selective and fouling-resistant fluorous perfluoropolymer membranes introduced by the academic partner Phil Buhlmann. The broader impacts of this research are significant as it will enable the mining industry to be more sustainable in its approach to mineral recovery. Specifically, our research aims to significantly reduce the amount of toxic chemical waste associated with froth flotation and its inevitable environmental impact. The method has the potential of making the US copper industry more competitive by reducing wasted collector while simultaneously improving mining sustainability by eliminating unnecessary chemical discharges. In addition to these benefits, the multidisciplinary aspects of this project will train students in synthetic and analytical techniques, involving concepts from chemistry, materials science, and engineering. A graduate student will have the opportunity to mentor an undergraduate students involved in this project through directed research studies and through the NSF-REU programs at the UMN.

Agency
National Science Foundation (NSF)
Institute
Division of Industrial Innovation and Partnerships (IIP)
Type
Standard Grant (Standard)
Application #
0930087
Program Officer
Gregory T. Baxter
Project Start
Project End
Budget Start
2009-07-01
Budget End
2010-12-31
Support Year
Fiscal Year
2009
Total Cost
$180,000
Indirect Cost
Name
United Science LLC
Department
Type
DUNS #
City
Center City
State
MN
Country
United States
Zip Code
55012